Hostname: page-component-5c6d5d7d68-wp2c8 Total loading time: 0 Render date: 2024-08-22T02:20:50.687Z Has data issue: false hasContentIssue false

Morphology of Rigid-Rod Molecular Composites: An Overview

Published online by Cambridge University Press:  26 February 2011

Stephen J. Krause*
Affiliation:
Dept. of Chemical, Bio, and Materials Engineering,Arizona State University, Tempe, AZ 85287
Get access

Abstract

Rigid-rod molecular composites are a new class of high performance structural polymers which have high specific strength and modulus and also high thermal and environmental resistance. A rigid-rod, extended chain polymer component is used to reinforce a matrix of a ductile polymer with the intent of achieving a “composite” on the molecular level. After synthesis, the key to producing a molecular composite is to control morphology to disperse the reinforcing rod molecules as finely as possible in the matrix polymer. Individual rod molecules or bundles of molecular rods must have dimensions which result in a high ratio of length to width (aspect ratio) for efficient reinforcement. To achieve this, the reinforcing rod component must not phase separate at any stage of processing. Morphological characterization techniques, which can measure the orientation and dispersion (or, conversely, the degree of phase separation) of rod molecules provide the tools for correlating theoretically predicted and experimentally observed mechanical properties. Various morphological techniques which have been applied to molecular composite systems will be reviewed, including wide angle x-ray scattering and scanning and transmission electron microscopy. Structure-property correlations for molecular composite systems will be discussed with regard to models for mechanical properties. Application of new morphological techniques will also be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Helminiak, T.E., Arnold, F.E., and Benner, C.L., Am. Chem. Soc. Poly. Preprints, 16, 659 (1975).Google Scholar
2. Helminiak, T. E., Benner, C.L., Arnold, F., Husman, G., U.S. Pat. Appl. 902,525 (1978).Google Scholar
3. Hwang, W-F., Wiff, D., Benner, C., Helminiak, T., J. Macromol. Sci. Phys., B22, 231 (1983).CrossRefGoogle Scholar
4. Wolfe, J., “Polybenzthiazole and Polybenzoxazole Review” in Encyclopedia of Polymer Science and Engineering, 2nd Edition, J. Wiley & Sons, New York, 1988.Google Scholar
5. Husman, G., Helminiak, T.E., Adams, W.W., Wiff, D., and Benner, C.L., Am. Chem. Soc. Symp. Ser., 132, 203 (1980).Google Scholar
6. Flory, P.J., Proc. Roy. Soc. London, A234, 73 (1956).Google Scholar
7. Krause, S.J., Haddock, T., Price, G.E., Lenhert, P.G., O'Brien, J.F., Helminiak, T.E., and Adams, W.W., J. Polymer Sci. - Polym. Physics Edition, 24, 1991 (1986).CrossRefGoogle Scholar
8. Tsai, T.T., Arnold, F.E., and Hwang, W.F., Am. Chem. Soc. Poly. Preprints, 26, 144 (1985).Google Scholar
9. Krause, S.J., Haddock, T., Price, G.E., and Adams, W.W., Polymer, 229 195 (1988).CrossRefGoogle Scholar
10. Vezie, D.L., to be published in this volume MRS Proceedings.Google Scholar
11. Hwang, W.F., Wiff, D.R., Helminiak, T.E., and Adams, W.W., ACS Preprints, Org. Coat. and Plast. Chem., 48, 922 (1983).Google Scholar
12. Wickliffe, S.M., Malone, M.F., and Farris, R.J., J. Appl. Polym. Sci., 34, 931 (1987).Google Scholar
13. Nehme, O., Gabriel, C., Farris, R.J., Thomas, E.L., and Malone, M., J. Appl. Polym. Sci., 32, 1955 (1988).CrossRefGoogle Scholar
14. Krause, S.J. and Adams, W.W., Elect. Mic. Soc. Am. Proc., 46, 748 (1988).Google Scholar
15. Nishihara, T., Mera, H., and Matsuda, K., Am. Chem. Soc. Poly. Eng. Sci. Proc., 5, 821 (1986).Google Scholar
16. Takayanagi, M., Ogata, T., Morikawa, M., Kai, T., J. Macro. Sci. Phys., B 17, 519 (1980).Google Scholar
17. Chauh, H.C., Kyu, T., and Helminiak, T.E., Am. Chem. Soc. Poly. Eng. Sci. Proc., 52, 1106 (1988)Google Scholar
18. Day, R.J., Robinson, I.M., Zakikhani, M., and Young, R.J., Polymer, 28, 1833 (1988).Google Scholar
19. Krause, S.J., Adams, W.W., Kumar, S., Reilly, T., & Suzuki, T., Elec. Mic. Soc. Am. Proc., 45, 466 (1987).Google Scholar
20. Minter, J.R., Shimamura, K., and Thomas, E.L., J. Mat. Sci., 16, 3303, (1981).Google Scholar
21. Krause, S.J., Haddock, T.B., Lenhert, P.G., Hwang, W-F., Price, G., Helminiak, T.E., O'Brien, J.F., and Adams, W.W., Polymer, 29, 1353 (1988).Google Scholar
22. Christensen, R.M., Mechanics of Composite Materials, Wiley, New York, 1979.Google Scholar
23. Donaldson, S., private communication.Google Scholar
24. Wierschke, S.G., to be published in this volume MRS Proceedings.Google Scholar