Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-19T23:32:26.339Z Has data issue: false hasContentIssue false

Morphology of Nanometric Boron Nitride Powders Produced by Laser Pyrolysis

Published online by Cambridge University Press:  15 February 2011

F. Willaime
Affiliation:
Section de Recherches de Métallurgie Physique - Département d'Etude du Comportement des Matériaux - Direction des Technologies Avancées, Centre d'Etudes de Saclay, F-91191 Gif-sur- Yvette, France
L. Boulanger
Affiliation:
Section de Recherches de Métallurgie Physique - Département d'Etude du Comportement des Matériaux - Direction des Technologies Avancées, Centre d'Etudes de Saclay, F-91191 Gif-sur- Yvette, France
M. Cauchetier
Affiliation:
Service des Photons, Atomes et Molécules - Département de Recherches sur r'Etat Condensé, les Atomes et les Molécules - Direction des Sciences de la Matière, Centre d'Etudes de Saclay, F 91191 Gif-sur-Yvette, France
Get access

Abstract

Ultrafine boron nitride powders were synthesized by laser driven reactions in BC13-NH3 mixtures. The structure and morphology of the graphitic nanoparticles generated in this process were investigated by high-resolution electron microscopy. Polyhedral concentric shells (ranging in size from 30 nm to more than 100 nm) are a major constituent of the as-pyrolyzed powder. This onion-like configuration is very similar to that observed in carbon materials. After heat treatment at 1650°C under nitrogen atmosphere, plate-like particles with a few perfectly flat graphitic sheets (10 to 50 layer thick, 50 nm in diameter) are formed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Iijima, S., J. Cryst. Growth 50, 675 (1980).Google Scholar
2. Heidenreich, R.D., Hess, W.M. and Ban, L.L., J. Appl. Cryst. 1, 1 (1968).Google Scholar
3. Oberlin, A., in Chemistry and Physics of Carbon, edited by Thrower, P.A. (M. Dekker, New York, 1989) 22, pp. 1143.Google Scholar
4. Krätschmer, W., Lamb, L. D., Fostiropoulos, K. and Huffman, D., Nature 347, 354 (1990).Google Scholar
5. Iijima, S., Nature 354, 56 (1991).Google Scholar
6. Saito, Y., Yoshikawa, T., Inagaki, M., Tomita, M. and Hayashi, T., Chem. Phys. Letters 3–4, 277 (1993).Google Scholar
7. Heer, W.A. De and Ugarte, D., Chem. Phys. Letters 207, 480 (1993).Google Scholar
8. Ugarte, D., Nature 359, 707(1992).Google Scholar
9. Tenne, R., Margulis, L., Genut, M. and Hodes, G., Nature 360, 444 (1992).Google Scholar
10. Hershfinkel, M., Gheber, L.A., Volterra, V., Hutchison, J.L., Margulis, L. and Tenne, R., J. Am. Chem. Soc. 116, 1914 (1994).Google Scholar
11. Jensen, F. and Tolfund, H., Chem. Phys. Letters 201, 89 (1993).Google Scholar
12. Rubio, A., Corkill, J.L. and Cohen, M.L., Phys. Rev. B 49, 5081 (1994).Google Scholar
13. Luce, M., Croix, O., Zhou, Y.D., Cauchetier, M., Sapin, M. and Boulanger, L.,. in Euroceramics II, edited by Ziegler, G. and Hausner, H. (Deutsche Keramische Gesellschaft, Köln, Germany, 1993) pp. 233238.Google Scholar
14. Baraton, M.I., Boulanger, L., Cauchetier, M., Lorenzelli, V., Luce, M., Merle, T., Quintard, P. and Zhou, Y.H., J. Eur. Ceram. Soc. 13, 371 (1994).Google Scholar
15. Chukalin, V.I., Chukanov, N.V., Gurov, S.V., Troitskii, V.N., Filatova, N.E., Rezchikova, T.V., and Domashneva, E.P., Sov. Powder Metall. and Met. Ceram. 27, 81 (1988).Google Scholar
16. Lindquist, D.A., Janik, J.F., Datye, A.K. and Payne, R.T., J. Am. Ceram. Soc. 74, 3126 (1991).Google Scholar
17. Bartnitskaya, T.S., Kosolapova, T.Y., Kurdyumov, A.V., Oleinik, G.S. and Pilyankevich, A.N., J. Less-Com. Metals 117, 253 (1986).Google Scholar
18. Ugarte, D., Chem. Phys. Letters 198, 596 (1992).Google Scholar
19. Iijima, S., Ajayan, P.M. and Ichihashi, T., Phys. Rev. Lett. 69, 3100 (1992).Google Scholar