Skip to main content Accessibility help

Monte Carlo Simulation of Hall Effect in n-Type GaN

  • J.D. Albrecht (a1), P.P. Ruden (a1), E. Bellotti (a2) and K.F. Brennan (a2)


Results of Monte Carlo simulations of electron transport for wurtzite phase GaN in crossed, weak electric and magnetic fields are presented. It is found that the Hall factor, τ H = μ Hall drift , decreases monotonically as the temperature increases from 77K to 400K. The low temperature value of the Hall factor increases significantly with increasing doping concentration. The Monte Carlo simulations take into account the electron-lattice interaction through polar optical phonon scattering, deformation potential acoustic phonon scattering (treated as an inelastic process), and piezoelectric acoustic phonon scattering. Impurity scattering due to ionized and neutral donors is also included, with the latter found to be important at low temperature due to the relatively large donor binding energy which implies considerable carrier freeze-out already at liquid nitrogen temperature. The temperature dependences of the electron concentration, drift mobility, and Hall factor are calculated for donor concentrations equal to 5 × 1016 cm-3, 1017 cm-3, and 5 × 1017 cm-3. The Monte Carlo simulations are compared to classical analytical results obtained using the relaxation-time approximation, which is found to be adequate at low temperatures and sufficiently low carrier concentrations so that inelastic scattering effects due to optical phonons and degeneracy effects are negligible. The influence of dislocations on the Hall factor is discussed briefly.



Hide All
1 Look, D.C. and Molnar, R.J., Appl. Phys. Lett., 70, 3377 (1997).
2 Weimann, N.G., Eastman, L.F., Doppalapudi, D., Ng, H.M., and Moustakas, T.D., J. Appl. Phys., 83, 3656 (1998).
3 Molnar, R.J., Lei, T., and Moustakas, T.D., Appl. Phys. Lett., 62, 72 (1993).
4 Götz, W., Romano, L.T., Walker, J., Johnson, N.M., and Molnar, R.J., Appl. Phys. Lett., 72, 1214 (1998).
5 Gotz, W., Johnson, N.M., Chen, C., Liu, H., and Imler, W., Appl. Phys. Lett., 68, 3144 (1996).
6 Boardman, A.D., Fawcett, W., and Ruch, J.G., Phys. Stat. Sol., 4, 133 (1971).
7 Dijkstra, J.E. and Wenckebach, W. Th., Appl. Phys. Lett., 70, 2428 (1997).
8 Warmenbol, P., Peeters, F.M., and DeVreese, J.T., Phys. Rev. B, 33, 1213 (1986).
9 Williams, C.K., Littlejohn, H.A., Glisson, T.H., and Hauser, J.R., Superlattices and Microstructures, 2, 201 (1986).
10 Albrecht, J.D., Wang, R.P., Ruden, P.P., Farahmand, M., and Brennan, K.F., J. Appl. Phys., 83, 4777 (1998).
11 Wang, R.P., Ruden, P.P., Kolnik, J., Oguzman, I., and Brennan, K.F., Mat. Res. Soc. Symp. Proc., 445, 935 (1997).
12 Meyer, J.R. and Bartoli, F.J., Phys. Rev. B, 24, 2089 (1981).
13See, e.g., Schiff, L., Quantum Mechanics, McGraw-Hill, New York (1955).
14For a canonical list of analytical relaxation-time approximations see Look, D.C., Electrical Characterization of GaAs Materials and Devices, John Wiley & Sons, New York (1989).
15 Look, D.C., Sizelove, J.R., Keller, S., Wu, Y.F., Mishra, U.K., and DenBaars, S.P., Solid State Commun., 102, 297 (1997).
16 Wickenden, A.E., Gaskill, D.K., Koleske, D.D., Doverspike, K., Simons, D.S., and Chi, P.H., Mat. Res. Soc. Symp. Proc., 395, 679 (1996).
17 Ng, H.M., Doppalapudi, D., Moustakas, T.D., Weimann, N.G., and Eastman, L.F., Appl. Phys. Lett., 73, 821 (1998).

Monte Carlo Simulation of Hall Effect in n-Type GaN

  • J.D. Albrecht (a1), P.P. Ruden (a1), E. Bellotti (a2) and K.F. Brennan (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed