Hostname: page-component-7bb8b95d7b-lvwk9 Total loading time: 0 Render date: 2024-09-11T15:57:06.649Z Has data issue: false hasContentIssue false

Monolithically Integrated p- & n- Channel Thin Film Transistors of Nanocrystalline Silicon on Plastic Substrates

Published online by Cambridge University Press:  21 March 2011

I-Chun Cheng
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, U.S.A.
Sigurd Wagner
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, U.S.A.
Get access

Abstract

Inverters made of monolithically integrated p- and n-channel thin film transistors of nanocrystalline silicon were demonstrated on both Corning 1737 glass and Kapton E polyimide substrates. The TFT's geometry is staggered top-gate, bottom-source/rain. A nc-Si:H seed layer promotes the structural evolution of the nc-Si:H channel. Electron field-effect mobilities of 15 - 30 cm2V−1s-1 and hole mobilities of 0.15 - 0.35 cm2V−1s−1 were obtained. Slightly lower carrier mobilities were observed in the TFTs made on polyimide than on glass substrates. High gate leakage currents and offsets between the supply HIGH voltages and the output voltages in the inverters indicate that the low-temperature gate dielectric needs improvement.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Burns, S.G., Shanks, H.R., Constant, A.P., Gruber, C., Schmidt, D., Landin, A., and Olympie, F., Thin Film Transistor Technologies III, Kuo, Yue ed., Electrochem. Soc. Proc. Vol. 96–23, 382 (1997).Google Scholar
2. Gleskova, H. and Wagner, S., IEEE Electron Device Lett. 20, 473 (1999).Google Scholar
3. Smith, P.M., Carey, P.G., and Sigmon, T.W., Appl. Phys. Lett., 70, 342 (1997).Google Scholar
4. Gosain, D. P., Noguchi, T., and Usui, S., Jpn. J. of Appl. Phys. Part 2: Letters, 39, 3AB, L179 (2000).Google Scholar
5. Inoue, S., Utsunomiya, S., Saeki, T., and Shimoda, T., IEEE Trans. on Electron Device, 49, 1353 (2002).Google Scholar
6. Bao, Z., Feng, Y., Dodabalapur, A., Raju, V. R., and Lovinger, A. J., Chem. Mater., 9, 1299 (1997).Google Scholar
7. Drury, C. J., Mutsaers, C. M., Hart, C. M., Matters, M., and Leeuw, D. M., Appl. Phys. Lett., 73, 108 (1998).Google Scholar
8. Kane, M. G., Campi, J., Hammond, M. S., Cuomo, F. P., Greening, B., Sheraw, C. D., Nichols, J. A., Gundlach, D. J., Huang, J. R., Huang, C.-C., Jia, L., Klauk, H., and Jackson, T. N., IEEE Electron Dev. Lett., 21, 534 (2000).Google Scholar
9. Bonse, M., Thomasson, D. B., Klauk, H., Gundlach, D. J., and Jackson, T. N., Tech. Digest of IEDM 1998, IEEE, New York, 249 (1998).Google Scholar
10. Stewart, R., Chiang, A., Hermanns, A., Vicentini, F., Jacobsen, J., Atherton, J., Boling, E., Cuomo, F., Drzaic, P., and Pearson, S., Proc. SPIE - Int. Soc. Opt. Eng. 4712, 350 (2002).Google Scholar
11. Lee, Y., Li, H. and Fonash, S. J., IEEE Electron Device Lett. 24, 19 (2003).Google Scholar
12.http://www.iowathinfilm.com/technology/index.html.Google Scholar
13.http://www.hamcontact.com/unisolar/engentek.html.Google Scholar
14.http://www.fujielectric.co.jp/eng/company/tech/contents2002_05.html.Google Scholar
15. Finger, F., Hapke, P., Luysberg, M., Carius, R., Wagner, H. and Scheib, M., Appl. Phys. Lett., 65, 2588 (1994).Google Scholar
16. Tzolov, M., Finger, F., Carius, R. and Hapke, P., J. Appl. Phys., 81, 7376 (1997).Google Scholar
17. Vallat-Sauvain, E., Kroll, U., Shah, A. and Pohl, J., J. Appl. Phys., 87, 3137 (2000).Google Scholar
18. Mulato, M., Chen, Y., Wagner, S. and Zanatta, A. R., J. Non-Cryst. Solids, 266–269, 1260 (2000).Google Scholar
19. Platz, R. and Wagner, S., Appl. Phys. Lett., 73, 1236 (1998).Google Scholar
20. Bifano, T. G., Johnson, H. T., Bierden, P., and Mali, R. K., J. Mems, 11, 592 (2002).Google Scholar