Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-24T22:04:59.273Z Has data issue: false hasContentIssue false

Monocrystalline Si Films from Transfer Processes for Thin Film Devices

Published online by Cambridge University Press:  17 March 2011

Ralf B. Bergmann
Affiliation:
Universität Stuttgart, Institut für Physikalische Elektronik, Pfaffenwaldring 47, D-70569 Stuttgart, Germany
Christopher Berge
Affiliation:
Universität Stuttgart, Institut für Physikalische Elektronik, Pfaffenwaldring 47, D-70569 Stuttgart, Germany
Titus J. Rinke
Affiliation:
Universität Stuttgart, Institut für Physikalische Elektronik, Pfaffenwaldring 47, D-70569 Stuttgart, Germany
Jürgen H. Werner
Affiliation:
Universität Stuttgart, Institut für Physikalische Elektronik, Pfaffenwaldring 47, D-70569 Stuttgart, Germany
Get access

Abstract

The transfer of thin monocrystalline silicon films to foreign substrates is of great interest for a number of applications such as silicon on insulator devices, active matrix displays and thin film solar cells. We present a transfer approach for the fabrication of monocrystalline Si films on foreign substrates based on the formation of quasi-monocrystalline Si-films. Our transfer approach is compatible with high temperature processing such as epitaxial growth at 1100°C, thermal oxidation and phosphorous diffusion. Reuse of Si host wafers is demonstrated by the subsequent epitaxial growth of three monocrystalline Si films on a single host wafer. Monocrystalline Si films with a thickness of 15 µm and a diameter of 3” are transferred to glass and flexible plastic substrates. The typical light point defect density in films transferred from virgin wafers ranges between 10 to 100 cm−2, while stacking fault and dislocation densities are ≤ 100 cm−2. The minority carrier diffusion length in the epitaxial Si films is around 50 µm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bergmann, R. B., Rinke, T. J., Oberbeck, L., and Dassow, R. in: Perspectives, Science and Technologies for Novel Silicon on Insulator Devices, Eds.: Hemment, P. L. F., Lysenko, V. S. and Nazarov, A. N., NATO Science Series 3. High Technology – Vol. 73 (Kluwer, Dordrecht, 2000), p. 109.Google Scholar
2. Colinge, J.-P., MRS Bulletin 23 (12), 16 (1998).Google Scholar
3. Street, R. A., phys. stat. sol. (a) 166, 695 (1998).Google Scholar
4. Little, R. G. and Nowlan, M. J., Prog. Photovolt. Res. and Appl. 5, 309 (1997).Google Scholar
5. Bergmann, R. B., Recent Res. Devel. Crystal Growth Res. 1, 241 (1999).Google Scholar
6. Izumi, K., MRS Bulletin 23 (12), 20 (1998).Google Scholar
7. Wagner, S., Gleskova, H., Ma, E. Y., Suo, Z. in: Proc. of the SPIE – The International Society for Optical Engineering, Vol. 3636 (1999), p. 32.Google Scholar
8. Bergmann, R. B. and Rinke, T. R., Prog. Photovolt.: Res. Appl. 8, 451 (2000).Google Scholar
9. Yonehara, T., Sakaguchi, K. and Sato, N., Appl. Phys. Lett. 64, 2108 (1994).Google Scholar
10. Sakaguchi, K., Sato, N., Yamagata, K., Atoji, T., Fujiyama, Y., Nakayama, J., and Yonehara, T., IEICE Trans. Electron. E80–C, 378 (1997).Google Scholar
11. Sakaguchi, K. and Yonehara, T., Solid State Technology 43, 88 (2000).Google Scholar
12. Bruel, M., Aspar, B., and Auberton-Herve, A.-J., Jpn. J. Appl. Phys. 36, 1636 (1997).Google Scholar
13. Bruel, M., Materials Research Innovations 3, 9 (1999).Google Scholar
14. Bruel, M. in: Perspectives, Science and Technologies for Novel Silicon on Insulator Devices, Eds.: Hemment, P. L. F., Lysenko, V. S. and Nazarov, A. N., NATO Science Series 3. High Technology – Vol. 73 (Kluwer, Dordrecht, 2000), p. 1.Google Scholar
15. Weber, K. J., Catchpole, K., Stocks, M., and Blakers, A. W. in: Proc. 26th IEEE Photovolt. Specialists Conf. (IEEE, Picataway,1997), p. 107.Google Scholar
16. Weber, K. J., McCann, M., Catchpole, K. R., Stocks, M. and Blakers, A. W., Recent Res. Devel. Crystal Growth Res. 1, 159 (1999).Google Scholar
17. Brendel, R., Artmann, H., Oelting, S., Frey, W., Werner, J. H., and Queisser, J. H., Appl. Phys. A 67, 151 (1998).Google Scholar
18. Brendel, R. and Scholten, D., Appl. Phys. A 69, 201 (1999).Google Scholar
19. Tayanaka, H., Yamauchi, K., and Matsushita, T. in: Proc. 2nd World Conf. on Photovolt. Solar Energy Conversion, eds. Schmid, J., Ossenbrink, H. A., Helm, P., Ehmann, H., Dunlop, E. D. (Europ. Commission, Ispra, 1998), p. 1272.Google Scholar
20. Rinke, T. J., Bergmann, R. B., and Werner, J. H., Appl. Phys. A 68, 705 (1999).Google Scholar
21. Cullis, A. G., Canham, L. T., and Calcott, P. D. J, J. Appl. Phys. 82, 909 (1997).Google Scholar
22. Rinke, T. J., Bergmann, R. B., and Werner, J. H., Mat. Res. Soc. Symp. Proc. 558, 251 (1999).Google Scholar
23. Manotas, S., Agullo-Rueda, F., Moreno, J. D., Martin-Palma, R. J., Guerrero-Lemus, R., and Matinez-Duart, J. M., Appl. Phys. Lett. 75, 977 (1999).Google Scholar
24. Canham, L. (Volume editor) Properties of porous Silicon, in: EMIS Datareviews Series No. 18 (The Institution of Electrical Engineers, London, 1997).Google Scholar
25. d'Aragona, F. Secco, J. Electrochem. Soc. 119, 948 (1972).Google Scholar
26. Kern, W. and Puotinen, D.A., RCA Rev. 6, 187 (1970)Google Scholar
27. Rinke, T. J., Bergmann, R. B. and Werner, J. H., in: Proc. 16th Europ. Photovolt. Solar Energy Conf., Eds.: Scheer, H., McNelis, B., Palz, W., Ossenbrink, H. A. and Helm, P. (James & James Science Publishers Ltd., London, 2000), p. 1128.Google Scholar
28. Bergmann, R., Rinke, T. J., Berge, C., Schnidt, J., Werner, J. H. in: 12th Internat. Photovolt. Science and Engineering Conf., Cheju, Korea, 11.–15. June 2001, accepted for presentation.Google Scholar