Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-07-05T01:19:55.518Z Has data issue: false hasContentIssue false

Monitoring Iron Contamination in Silicon by Surface Photovoltage and Correlation to Gate Oxide Integrity

Published online by Cambridge University Press:  21 February 2011

Worth B. Henley
Affiliation:
Center for Microelectronics Research, University of South Florida
Lubek Jastrzebski
Affiliation:
Center for Microelectronics Research, University of South Florida
Nadim F. Haddad
Affiliation:
IBM Corporation, Manassas, VA
Get access

Abstract

The effects of iron contamination on gate oxide characteristics are examined from an experimental and modeling perspective. Gate oxide integrity is measured for silicon wafers contaminated with 1010 to 1014cm−3 of iron. Thermal oxides of 8, 10,13 and 20nm are studied. Iron concentration in silicon is measured non-destructively using Surface Photovoltage (SPV) minority carrier lifetime analysis. The SPV analysis technique is described. Based on the experimental data, allowable threshold iron contamination levels for various gate oxide thicknesses are established. For 10nm oxides, iron concentration cannot exceed 8×1010cm−3 without severe degradation in oxide quality. The threshold contamination level for 20nm oxides is 200 times higher. Time dependent dielectric breakdown (TDDB) test results indicate detrimental reliability effects can occur at even lower contamination levels.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Proceedings of Metallic Contamination in Mega Processes, Nikkei Microdev, May 1990, p. 54.Google Scholar
2. Ohsawa, A., Honda, K, Takizawa, R., Nakanishi, T., Aoki, M., and Toyokura, N., in Semiconductor Silicon 1990, (Electrochemical Soc., 1990), p. 601.Google Scholar
3. Hiramoto, K, Sano, M., Sadamitsu, S., Fujino, N., J. Appl. Phys., Nov. 1989, p. 21092112.CrossRefGoogle Scholar
4. Honda, K, Ohsawa, A., Toyokura, N., Appl. Phys. Lett., 46, 582, 1985.CrossRefGoogle Scholar
5. Jastrzebski, L., in Semiconductor Silicon 1990, (Electrochemical Soc., 1990), p.614.Google Scholar
6. Zoth, G. and Bergholz, W., J. Appl. Phys, 67(11), p. 6764, 1990.CrossRefGoogle Scholar
7. Niki, Y., Nadahara, S., Watanabe, M., “International Conference on Science and Technology of Defect Control in Semiconductors”, Conference Proceedings, Sept. 1989, Yokohama, Japan.Google Scholar
8. Honda, K., Nakanishi, T., Ohsawa, A., Toyokura, N., Proceedings of the Microscopy of Semiconducting Materials Conf., April 1987, p. 463.Google Scholar
9. Jastrzebski, L., Henley, W., Neuse, C., Solid State Technology, Dec. 1992, p.27.Google Scholar
10. Zoth, G. and Bergholz, W., J. Appl. Phys., 67(11), p. 6764, 1990.CrossRefGoogle Scholar
11. Honda, K, Ohsawa, A., Toyokura, N., Appl. Phys. Lett., 46, 582, 1985.CrossRefGoogle Scholar
12. Takizawa, R., Nakanishi, T., Ohsawa, A., J. Appl. Phys., 62, 12, p. 4933, Dec. 1987.CrossRefGoogle Scholar
13. Lagowski, J., Edelman, P., Dexter, M., Henley, W., Semicon. Sci. Tech., 7,1992, A85.Google Scholar
14. Jastrzebski, L., Henley, W., Neuse, C., Solid State Technology, Dec. 1992, p.27.Google Scholar
15. Lagowski, J., Edelman, P., Dexter, M., Henley, W., Semicon. Sci. Tech., 7,1992, A85.Google Scholar
16. Zoth, G. and Bergholz, W., J. Appl. Phys., 67(11), p. 6764, 1990.CrossRefGoogle Scholar
17. Ryoo, K and Socha, W. E., J. Electrochem. Soc., Vol. 138, No. 5, May1991, p. 1424.CrossRefGoogle Scholar
18. Takizawa, R., Nakanishi, T., Ohsawa, A., J. Appl. Phys., 62, 12, p. 4933, Dec. 1987.CrossRefGoogle Scholar
19. Galllego, J.M., Miranda, R., J. Appl. Phys., 69(3), p. 1377, 1991.CrossRefGoogle Scholar
20. Murarka, S.P., “Silicides for VLSI Applications”, Academic Press, 1983.Google Scholar
21. Patel, J. R., in Semiconductor Silicon 1981, (Electrochemical Soc., 1981), p.189.Google Scholar
22. Landau, L. D., Lifshitz, E. M., Electrodynamics Continuous Media. Pergamon Press, Oxford, 1960.Google Scholar
23. Technology Modeling Associates, MEDICI.Google Scholar
24. Honda, K, Ohsawa, A., Toyokura, N., Appl. Phys. Lett., 46, 582, 1985.CrossRefGoogle Scholar
25. Lee, J. C., Chen, I.C., Hu, C., IEEE Trans. Elec. Dev., Vol. 35, No. 12, p2268, Dec. 1988.CrossRefGoogle Scholar
26. Moazzami, R., Hu, C., IEEE Trans. Elec. Dev., Vol. 37 No. 7, p1643, July 1990.CrossRefGoogle Scholar