Skip to main content Accessibility help
×
Home

Monitoring Iron Contamination in Silicon by Surface Photovoltage and Correlation to Gate Oxide Integrity

  • Worth B. Henley (a1), Lubek Jastrzebski (a1) and Nadim F. Haddad (a2)

Abstract

The effects of iron contamination on gate oxide characteristics are examined from an experimental and modeling perspective. Gate oxide integrity is measured for silicon wafers contaminated with 1010 to 1014cm−3 of iron. Thermal oxides of 8, 10,13 and 20nm are studied. Iron concentration in silicon is measured non-destructively using Surface Photovoltage (SPV) minority carrier lifetime analysis. The SPV analysis technique is described. Based on the experimental data, allowable threshold iron contamination levels for various gate oxide thicknesses are established. For 10nm oxides, iron concentration cannot exceed 8×1010cm−3 without severe degradation in oxide quality. The threshold contamination level for 20nm oxides is 200 times higher. Time dependent dielectric breakdown (TDDB) test results indicate detrimental reliability effects can occur at even lower contamination levels.

Copyright

References

Hide All
1. Proceedings of Metallic Contamination in Mega Processes, Nikkei Microdev, May 1990, p. 54.
2. Ohsawa, A., Honda, K, Takizawa, R., Nakanishi, T., Aoki, M., and Toyokura, N., in Semiconductor Silicon 1990, (Electrochemical Soc., 1990), p. 601.
3. Hiramoto, K, Sano, M., Sadamitsu, S., Fujino, N., J. Appl. Phys., Nov. 1989, p. 21092112.
4. Honda, K, Ohsawa, A., Toyokura, N., Appl. Phys. Lett., 46, 582, 1985.
5. Jastrzebski, L., in Semiconductor Silicon 1990, (Electrochemical Soc., 1990), p.614.
6. Zoth, G. and Bergholz, W., J. Appl. Phys, 67(11), p. 6764, 1990.
7. Niki, Y., Nadahara, S., Watanabe, M., “International Conference on Science and Technology of Defect Control in Semiconductors”, Conference Proceedings, Sept. 1989, Yokohama, Japan.
8. Honda, K., Nakanishi, T., Ohsawa, A., Toyokura, N., Proceedings of the Microscopy of Semiconducting Materials Conf., April 1987, p. 463.
9. Jastrzebski, L., Henley, W., Neuse, C., Solid State Technology, Dec. 1992, p.27.
10. Zoth, G. and Bergholz, W., J. Appl. Phys., 67(11), p. 6764, 1990.
11. Honda, K, Ohsawa, A., Toyokura, N., Appl. Phys. Lett., 46, 582, 1985.
12. Takizawa, R., Nakanishi, T., Ohsawa, A., J. Appl. Phys., 62, 12, p. 4933, Dec. 1987.
13. Lagowski, J., Edelman, P., Dexter, M., Henley, W., Semicon. Sci. Tech., 7,1992, A85.
14. Jastrzebski, L., Henley, W., Neuse, C., Solid State Technology, Dec. 1992, p.27.
15. Lagowski, J., Edelman, P., Dexter, M., Henley, W., Semicon. Sci. Tech., 7,1992, A85.
16. Zoth, G. and Bergholz, W., J. Appl. Phys., 67(11), p. 6764, 1990.
17. Ryoo, K and Socha, W. E., J. Electrochem. Soc., Vol. 138, No. 5, May1991, p. 1424.
18. Takizawa, R., Nakanishi, T., Ohsawa, A., J. Appl. Phys., 62, 12, p. 4933, Dec. 1987.
19. Galllego, J.M., Miranda, R., J. Appl. Phys., 69(3), p. 1377, 1991.
20. Murarka, S.P., “Silicides for VLSI Applications”, Academic Press, 1983.
21. Patel, J. R., in Semiconductor Silicon 1981, (Electrochemical Soc., 1981), p.189.
22. Landau, L. D., Lifshitz, E. M., Electrodynamics Continuous Media. Pergamon Press, Oxford, 1960.
23. Technology Modeling Associates, MEDICI.
24. Honda, K, Ohsawa, A., Toyokura, N., Appl. Phys. Lett., 46, 582, 1985.
25. Lee, J. C., Chen, I.C., Hu, C., IEEE Trans. Elec. Dev., Vol. 35, No. 12, p2268, Dec. 1988.
26. Moazzami, R., Hu, C., IEEE Trans. Elec. Dev., Vol. 37 No. 7, p1643, July 1990.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed