Skip to main content Accessibility help

Molecule-Based Approaches to High-Performance Second-Order Polymeric Nonlinear Optical Materials. Properties of Ultra-high-Tg Chromophoric Polyimides and Polyureas.

  • Jia-Fu Wang (a1), Lifeng Geng (a1), Weiping Lin (a2), Tobin J. Marks (a1) and George K. Wong (a2)...


This contribution describes the synthesis and properties of three classes of model NLO chromophore-functionalized high-Tg polymers which test current ideas about architecture-Tg- χ(2) performance relationships. Condensation of bismaleimides with diallylamino-functionalized donor-acceptor chromophores yields polable matrices with Tg values as high as 325°C and χ(2) responses as high as 0.7 × 10-7 esu (27 pm/V; λohigh as 0.7 × 10-7 esu (27 pm/V; λo = 1064 nm; 1.17 eV). Likewise, = 1064 nm; 1.17 eV). Likewise, condensation of o,o'-diallylbisphenol A with bismaleimides followed by chromophore functionalization yields an analogous series of polyimides with Tg values as high as 260°C and χ(2) response as high as 1.0 × 10-7 esu (42 pm/V at λo = 1064 nm). Polymerization of a bis(4-aminophenyl)lophine chromophore with bismaleimides or diisocyanates yields polymers with Tg values as high as 350°C and χ(2) = 0.62 × 10-7 esu (25 pm/V at λo = 1064 nm). All members of the above series exhibit minor to negligible decay in χ(2) response on aging in air at 100°C for 1000 h. The lophine-based material exhibits only ∼10% χ(2) decay on aging for 100 h at 200 °C under N2.



Hide All
1. Burland, D.M., Ed., Optical Nonlinearities in Chemistry, Chem. Rev., 94 (1994).10.1021/cr00025a600
2. Marks, T.J., Ratner, M.A., Angew. Chem. Int. Ed. Engl., 34, 155 (1995).10.1002/anie.199501551
3. Kanis, D.R., Ratner, M.A., Marks, T.J., in ref. la, pp. 195, and references therein.
4. Moylan, C.R., Twieg, R.J., Lee, V.Y., Swanson, S.A., Betterton, K.M., Miller, R.D., J. Am. Chem. Soc., 115, 12599, and references therein (1993).10.1021/ja00079a055
5. Takekoshi, T., Adv. Polymer Sci., 94, 2 (1990).
6. Sillion, B., in Comprehensive Polymer Science, Allen, G., Bevington, J.C., Eds., Pergamon Press: Oxford, 1989, Chapt. 30.
7. Valley, J.F., Wu, J.W., Ermer, S., Stiller, M., Binkley, E.S., Kenney, J.T., Lipscomb, G.F., Lytel, R., Appl. Phys. Lett., 60, 160 (1992).10.1063/1.107473
8. Jeng, R.J., Chen, Y.M., Jain, A.K., Kumar, J., Tripathy, S.K., Chem. Mater., 4, 1141 (1992).10.1021/cm00024a006
9. Lin, J.T., Hubbard, M.A., Marks, T.J., Lin, W., Wong, G.K., Chem. Mater., 4, 1148, (1992).10.1021/cm00024a009
10. Becker, M.W., Sapochak, L.S., Ghosen, R., Xu, C., Dalton, L.R., Shi, Y., Steier, W.H., Jen, A.K.- Y., Chem. Mater., 6, 104 (1994).10.1021/cm00038a002
11. Peng, Z., Yu, L., Macromolecules, 27, 2638 (1994).10.1021/ma00087a039
12. Wang, J.-F., Hubbard, M.A., Jin, Y., Lin, J.T., Marks, T.J., Lin, W.P., Wong, G.K., SPIE Proc., 2025, 62 (1993).10.1117/12.165303
13. Zahir, S., Chaudhari, M.A., King, J., Makromol. Chem. Macromol. Sympos., 25, 141 (1989).10.1002/masy.19890250114
14. Rossi, R.D., in Engineered Materials Handbook, (ASM International: Materials Park, OH, 1992), Vol.3, pp. 151162.
15. Wang, J.-F., Chee, Y.-H., Marks, T.J., Lin, W., Wong, G.K., submitted for publication.
16. Mortazavi, M.A., Knoesen, A., Kowel, S.T., Higgins, B.G., Dienes, A., J. Opt. Soc. Am. B, 6, 733 (1989).10.1364/JOSAB.6.000733
17. Morgan, R.J., Jurek, R.J., Donnellan, T., Yen, A., Polymer Preprints, 33, 426 (1992).
18. Moylan, C.R., Swanson, S.A., Walsh, C.A., Thacka, J.I., Twieg, R.J., Miller, R.D., Lee, V.Y., SPIE Proc., 2025, 192 (1993).10.1117/12.165256


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed