Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-07-01T15:26:07.125Z Has data issue: false hasContentIssue false

Molecular Sieve Thin Films via Laser Ablation

Published online by Cambridge University Press:  15 February 2011

Kenneth J. Balkus Jr.
Affiliation:
University of Texas at Dallas, Department of Chemistry, Richardson, TX 75083-0688
Scott J. Riley
Affiliation:
University of Texas at Dallas, Department of Chemistry, Richardson, TX 75083-0688
Bruce E. Gnade
Affiliation:
Materials Science Laborartory, Semiconductor Research and Development, Texas Instruments, Inc., Dallas, TX 75265
Get access

Abstract

Laser ablation has become widely recognized as an effective technique for the preparation of thin solid films. We have employed an excimer laser (KrF, 248 nm) to deposit well dispersed thin films of aluminum phosphate molecular sieves on a titanium nitride substrate. Results for the ablation of AIPO4-5, AIPO4-H3 and AIPO4-H1 molecular sieve targets are presented. The laser power and repetition rate as well as substrate distance and temperature affect the thin film formation. A subsequent hydrothermal post treatment of the ablated films was found to enhance the surface crystallinity. The molecular sieve thin films were characterized by XRD, SEM, XRF, and FT-IR spectroscopy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Szostak, R., Molecular Sieves, (Van Nostrand Reinhold, NY, (1992).Google Scholar
2. Brown, K., Bein, T., Frye, G.C. and Brinker, C.J., J. Am. Chem. Soc. 111, 7640 (1989).Google Scholar
3. Yan, Y. and Bein, T., Mater. Res. Soc. Symp. Proceed. 233, 175 (1991).Google Scholar
4. Yan, Y., and Bein, T., J. Phys. Chem. 96, 9387 (1992).Google Scholar
5. Yan, Y. and Bein, T., Chem. Mater. 4, 975 (1992).Google Scholar
6. Alberti, K., Haas, J., Plog, L. C. and Fetting, F., Catal. Today 8, 509 (1991).Google Scholar
7. Haas, J., Plog, C. and Obermeier, E., Eur. Patent No. 426,989 A1 (1991).Google Scholar
8. Davis, S. P., E. Borgstedt, V. R., Suib, S. L., Chun, S., Jinghui, C., Wenyang, X. and Feng, X., Chem. Mater. 2, 712 (1990).Google Scholar
9. Creasy, K. E., Deng, Y. P., Park, J., Borgstedt, E. V. R., Davis, S. P., Suib, S. L. and Shaw, B. R., Mater. Res. Soc. Symp. Proceed. 233, 157 (1991).Google Scholar
10. Jianquan, L., Jinxiang, D., Guanghuan, L., Yanjun, S., Jinghui, C., Wenyang, X. and Feng, W., React. Kinet. Catal. Lett. 47, 287 (1992).Google Scholar
11. Cheung, J.T. and Sankur, H., CRC Crit. Rev. Solid State Mater. Sci. 5, 63 (1989) and references there in.Google Scholar
12. Duncan, B., Stocker, M., Gwinup, D., Szostak, R. and Vinje, K., Bull. Soc. Chim. Fr. 129, 98 (1992).Google Scholar
13. Balkus, K. J. Jr., Riley, S. J. and Gnade, B. E., manuscript in prep.Google Scholar
14. Lynds, L., Weiberger, B.R., Potrepka, T.M., Peterson, G.G. and Lindsay, M.P., Physica C 159, 61 (1989).Google Scholar
15. Boszormenyi, I., Nakayama, T., McIntyre, B. and Somorjai, G. A., Catal. Lett. 10, 343 (1991).Google Scholar