Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-19T19:50:04.089Z Has data issue: false hasContentIssue false

Molecular Dynamics Simulations of Hexadecane/Silicalite Interfaces

Published online by Cambridge University Press:  10 February 2011

Edmund B. Webb III
Affiliation:
Corporate Research Science Laboratories, Exxon Research & Engineering Company, Annandale, New Jersey 08801 and Sandia National Laboratories, Albuquerque, NM 87185-1411 [a]
Gary S. Grest
Affiliation:
Corporate Research Science Laboratories, Exxon Research & Engineering Company, Annandale, New Jersey 08801 and Sandia National Laboratories, Albuquerque, NM 87185-1411 [a]
Get access

Abstract

The interface between liquid hexadecane and the (010) surface of silicalite was studied by molecular dynamics. The structure of molecules in the interfacial region is influenced by the presence of pore mouths on the silicalite surface. For this surface, whose pores are the entrances to straight channels, the concentration profile for partially absorbed molecules is peaked around 10 monomers inside the zeolite. No preference to enter or exit the zeolite based on absorption length is observed except for very small or very large absorption lengths. We also found no preferential conformation of the unabsorbed tails for partially absorbed molecules.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kärger, J. and Ruthven, D., Diffusion in Zeolites and Other Microporous Solids (Wiley, New York, 1991).Google Scholar
2. van Well, W. J. M. et al., J. Phys. Chem. B 102, 3952 (1998).Google Scholar
3. Reyes, S. C. et al., J. Phys. Chem. B 101, 614 (1997).Google Scholar
4. Jama, M. A., Delmas, M. P. F., and Ruthven, D. M., Zeolites 18, 200 (1997).Google Scholar
5. Snurr, R. Q. and Kärger, J., J. Phys. Chem. B 101, 6469 (1997).Google Scholar
6. Silbernagel, B. G., Garcia, A. R., and Newsam, J. M., Coll. Surf. A 72, 71 (1993).Google Scholar
7. Niessen, W. and Karge, H. G., Appl. Surf. Sci. Catal. 60, 213 (1991).Google Scholar
8. Voogd, P. and Bekkum, H. V., Appl. Catal. 59, 311 (1990).Google Scholar
9. Meriaudeau, P. et al., J. Catal. 169, 55 (1997).Google Scholar
10. Souverijns, W. et al., Stud. Surf. Sci. Catal. 105, 1285 (1997).Google Scholar
11. Feijen, E. J. P., Martens, J. A., and Jacobs, P. A., Stud. Surf. Sci. Catal. 101, 721 (1996).Google Scholar
12. Martens, J. A. et al., Angew. Chem. Int. Ed. Engl. 34, 2528 (1995).Google Scholar
13. Weitkamp, J. and Ernst, S., Catalysis Today 19, 107 (1994).Google Scholar
14. Nijhuis, T. A. et al., Chem. Eng. Sci. 52, 3401 (1997).Google Scholar
15. Bouyermaouen, A. and Bellemans, A., J. Chem. Phys. 108, 2170 (1998).Google Scholar
16. Runnebaum, R. C. and Maginn, E. J., J. Phys. Chem. B 101, 6394 (1997).Google Scholar
17. Jousse, F., Leherte, L., and Vercauteren, D. P., J. Mol. Catal. A: Chem. 119, 165 (1997).Google Scholar
18. Keffer, D., McCormick, A. V., and Davis, A. T., Mol. Phys. 87, 367 (1996).Google Scholar
19. Schrimpf, G., Tavitian, B., and Espinat, D., Revue de L'Institut Francais du Petrole 50, 105 (1996).Google Scholar
20. Dumont, D. and Bougeard, D., Zeolites 15, 650 (1995).Google Scholar
21. June, R. L., Bell, A. T., and Theodorou, D. N., J. Phys. Chem. 96, 1051 (1992).Google Scholar
22. Catlow, C. R. A. et al., J. Chem. Soc. Faraday Trans. 87, 1947 (1991).Google Scholar
23. Webb, E. B. III and Grest, G. S., J. Phys. Chem. B, submitted (1998).Google Scholar
24. Siepmann, J. I., Karaborni, S., and Smit, B., Nature 365, 330 (1993); B. Smit, S. Karaborni, and J. I. Siepmann, J. Chem. Phys. 102, 2126 (1995).Google Scholar
25. Jorgensen, W. L., Madura, J. D., and Swenson, C. J., J. Am. Chem. Soc. 106, 6638 (1984).Google Scholar
26. Webb, E. B. III and Grest, G. S., Catalysis Letters, in print.Google Scholar
27. Molecular Simulations Inc., San Diego, CA.Google Scholar
28. Allen, M. P. and Tildesley, D. J., Computer Simulation of Liquids (Clarendon, Oxford, 1987).Google Scholar
29. Humphrey, W., Dalke, A., and Schulten, K., J. Molec. Graphics 14, 33 (1996).Google Scholar
30. Xia, T. K., Ouyang, J., Ribarsky, M. W., and Landman, U., Phys. Rev. Lett. 69, 1967 (1992).Google Scholar