Hostname: page-component-68945f75b7-z7ghp Total loading time: 0 Render date: 2024-08-06T05:16:30.746Z Has data issue: false hasContentIssue false

Molecular dynamics simulation of point defect accumulation in 3C-SiC

Published online by Cambridge University Press:  01 February 2011

R. Devanathan
Affiliation:
Fundamental Science Directorate, Pacific Northwest National Laboratory Richland, WA 99352, U.S.A.
F. Gao
Affiliation:
Fundamental Science Directorate, Pacific Northwest National Laboratory Richland, WA 99352, U.S.A.
W. J. Weber
Affiliation:
Fundamental Science Directorate, Pacific Northwest National Laboratory Richland, WA 99352, U.S.A.
Get access

Abstract

Defect accumulation in silicon carbide has been simulated by molecular dynamics using a Brenner-type potential connected smoothly to the Ziegler-Biersack-Littmark potential. Displacement damage in 3C-SiC, which is known to consist of point defects, vacancy and interstitial clusters and anti-site defects, was modelled by introducing random displacements on the Si or C sublattice. SiC was amorphized by Si displacements at a damage level corresponding to 0.15 displacements per atom (dpa) and by C displacements at 0.25 dpa. In both cases, the damage consists of Si and C Frenkel pairs as well as anti-site defects. The results provide evidence that SiC can be amorphized by displacing C atoms exclusively and suggest that short-range disorder provides the driving force for amorphization of SiC.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Capano, M. A. and Trew, R. J., MRS Bull. 22(3), 19 (1997).Google Scholar
2. Melloch, M. R. and Cooper, J. A. Jr, MRS Bull. 22(3), 42 (1997).Google Scholar
3. Inui, H., Mori, H., and Sakata, T., Philos. Mag. B 66, 737 (1992).Google Scholar
4. Weber, W. J., Yu, N., Wang, L. M., and Hess, N. J., J. Nucl. Mater. 244, 258 (1997).Google Scholar
5. Heera, V., Prokert, F., Schell, N., Seifarth, H., Fukarek, W., Voelskow, M., and Skorupa, W., Appl. Phys. Lett. 70, 3531 (1997).Google Scholar
6. McHargue, C. J. and Williams, J. M., Nucl. Instrum. and Meth. B 80/81, 889 (1993).Google Scholar
7. Snead, L. L., Zinkle, S. J., Hay, J. C., and Osbourne, M. C., in Microstructure Evolution during Irradiation, edited by Robertson, I. M., Was, G. S., Hobbs, L. W., and Rubia, T. Diaz de la (Mater. Res. Soc. Symp. Proc. 439, Pittsburgh, PA, 1997) pp. 595600.Google Scholar
8. Snead, L. L. and Zinkle, S. J., Nucl. Instrum. Meth. B 191, 497 (2002).Google Scholar
9. Ishimaru, M., Bae, I.-T., Hirotsu, Y., Phys. Rev. B 68, 144102 (2003).Google Scholar
10. Zinkle, S. J. and Kinoshita, C., J. Nucl. Mater. 251, 200 (1997).Google Scholar
11. Devanathan, R., Weber, W. J. and Gao, F., J. Appl. Phys. 90, 2303 (2001).Google Scholar
12. Gao, F. and Weber, W. J., J. Mater. Res. 18(8), 1877 (2003).Google Scholar
13. Malerba, L. and Perlado, J. M., J. Nucl. Mater. 289, 57 (2001).Google Scholar
14. Gao, F. and Weber, W. J., Nucl. Instrum. and Meth. B 191, 504 (2002).Google Scholar
15. Gao, F. and Weber, W. J., J. Appl. Phys. 94(7), 4348 (2003).Google Scholar
16. Malerba, L. and Perlado, J. M., Phys. Rev. B 65, 045202 (2002).Google Scholar
17. Yuan, X. and Hobbs, L. W., Nucl. Instrum. and Meth. B 191, 74 (2002).Google Scholar
18. Finnis, M.W., MOLDY6-A Molecular Dynamics Program for Simulation of Pure Metals, UK AEA Harwell Laboratory Report, AERE R-13182, 1988.Google Scholar
19. Ziegler, J. F., Biersack, J. P., and Littmark, U., The Stopping and Range of Ions in Matter, (Pergamon Press, New York, 1985).Google Scholar
20. Nordlund, K., Ghaly, M., Averback, R. S., Caturla, M., Rubia, T. Diaz de la, and Tarus, J., Phys. Rev. B 57(13), 7556 (1998).Google Scholar
21. Ishimaru, M., Bae, I.-T., Hirotsu, Y., Matsumura, S., and Sickafus, K. E., Phys. Rev. Lett. 89(5), 055502 (2002).Google Scholar
22. Gehlen, P. C. and Cohen, J. B., Phys. Rev. A 139, 844 (1965).Google Scholar
23. Hobbs, L. W., Sreeram, A. N., Jesurum, C. E., and Berger, B. A., Nucl. Instrum. and Meth. B 116, 18 (1996).Google Scholar