Skip to main content Accessibility help
×
Home

Molecular Dynamics Based Study on Ductility Enhancement Effect of Nano-scale Void in Fine-grained Metallic Materials

  • Shin Taniguchi (a1), Toshihiro Kameda (a2) and Toshiyuki Fujita (a3)

Abstract

In fine-grained metallic materials, the dominant grain boundary (GB) process, such as dislocation emission, dislocation absorption, and dislocation pile-up, causes non-uniform deformation, which results in high yield stress and low ductility. When a nano-scale void is introduced, the dislocation activity enhancement around the void could inhibit GB fracture and enhance ductility. In this study, by considering nanocrystalline Cu models, the influence of an intragranular nano-scale void on the fracture process has been investigated through molecular dynamics simulation. The dependence of ductility enhancement on the grain size and void size has especially been discussed at low and room temperatures. Sufficient dislocation activity enhancement accompanied by optimal void growth causes a fracture mode transition from GB fracture to transgranular fracture. While the ductility enhancement strongly depends on the void size at low temperature, it depends on the grain size at room temperature. The strong dependence of ductility enhancement on the temperature is found in the case of relatively small grains.

Copyright

References

Hide All
1. Kumar, K.S., Swygenhoven, H.V., and Suresh, S., Acta Mater. 51, 5743 (2003).10.1016/j.actamat.2003.08.032
2. Cheng, S., Ma, E., Wang, Y.M., Kecskes, L.J., Youssef, K.M., Koch, C.C., Trociewitz, U.P., and Han, K., Acta Mater. 53, 1521 (2005).10.1016/j.actamat.2004.12.005
3. Liu, J., Nie, A., Dong, C., Wang, P., Wang, H., Fu, M., and Yang, W.. Mater. Lett. 65, 2769 (2011).10.1016/j.matlet.2011.05.095
4. Bringa, E.M., Traiviratana, S., and Meyers, M.A., Acta Mater. 58, 4458 (2010).10.1016/j.actamat.2010.04.043
5. Victoria, M., Baluc, N., Bailat, C., Dai, Y., Luppo, M.I., Schäublin, R., and Singh, B.N., J. Nucl. Mater. 276, 114 (2000).10.1016/S0022-3115(99)00203-2
6. de la Rubia, T. D., Zbib, H.M., Khraishi, T.A., Wirth, B.D., Victoria, M., and Caturla, M.J., Nature 406, 871 (2000).10.1038/35022544
7. Neishi, K., Horita, Z., and Langdon, T.G., Mater. Sci. Eng., A 352, 129 (2003).10.1016/S0921-5093(02)00868-7
8. Zhao, K.J., Chen, C.Q., Shen, Y.P., and Lu, T.J., Comput. Mater. Sci. 46, 749 (2009).10.1016/j.commatsci.2009.04.034
9. Kameda, T. and Zhang, B.R., Mater. Sci. Forum 654656, 1582 (2010).10.4028/www.scientific.net/MSF.654-656.1582
10. Taniguchi, S. and Kameda, T., MRS Online Proc. Libr. 1297, mrsf10-1297-p03-20 (2011).10.1557/opl.2011.559
11. Sun, P.L., Cerreta, E.K., Bingert, J.F., Gray, G.T. III, and Hundley, M.F., Mater. Sci. Eng., A 464, 343 (2007).10.1016/j.msea.2007.02.007
12. Osetsky, Y.N. and Bacon, D.J., Mater. Sci. Eng., A 400401, 374 (2005).10.1016/j.msea.2005.02.083
13. Daw, M.S. and Baskes, M.I., Phys. Rev., B 29, 6443 (1984).10.1103/PhysRevB.29.6443
14. Kekchber, C.L., Plimpton, S.J., and Hamilton, J.C., Phys, Rev., B 58, 85 (1998).
15. Honeycutt, D.J. and Andersen, H.C., J. Phys. Chem. 91, 4950 (1987).10.1021/j100303a014
16. Fan, G.J., Choo, H., Liaw, P.K., and Lavernia, E.J., Mater. Sci. Eng., A 409, 243 (2005).10.1016/j.msea.2005.06.073
17. Traiviratana, S., Bringa, E.M., Benson, D.J., and Meyers, M.A., Acta Mater. 56, 3874 (2008).10.1016/j.actamat.2008.03.047

Keywords

Related content

Powered by UNSILO

Molecular Dynamics Based Study on Ductility Enhancement Effect of Nano-scale Void in Fine-grained Metallic Materials

  • Shin Taniguchi (a1), Toshihiro Kameda (a2) and Toshiyuki Fujita (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.