Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-25T05:21:32.350Z Has data issue: false hasContentIssue false

Modulated Reflectance Spectroscopy of CdTe-Cd1−xMnxTe Multiple Quantum Wells and Superlattices Grown by Pulsed Laser Evaporation and Epitaxy

Published online by Cambridge University Press:  01 January 1992

D. Labrie
Affiliation:
Department of Physics, Dalhousie University, Halifax, N.S., Canada B3H 3J5
J.J. Dubowski
Affiliation:
Institute for Microstructural Sciences, National Research Council of Canada, Ottawa, Ontario, Canada KlA 0R6
Get access

Abstract

Piezoreflectance and photoreflectance spectroscopies have been used to investigate the electronic properties of CdTe-Cd1-xMnxTe (x − 0.10) multiple quantum well and superlattice structures grown by Pulsed Laser Evaporation and Epitaxy (PLEE). The structures with the CdTe well widths from 54Å to 245Å have been investigated. The spectra exhibit a series of signatures which are attributed to free exciton transitions occuring between the heavy-hole and light-hole bands and the upper electron subbands within the CdTe well layers. The spectra indicate that the PLEE grown structures are of an excellent quality typical of the best currently available material.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Furdyna, J.K. and Kossut, J., in Semiconductors and Semimetals, Vol. 25, edited by Willardson, R. K. and Beer, A. C. (Academic Press, New York, 1988), p.1.Google Scholar
2. Nakamura, K. and Nakano, H., J. Phys. Soc. 59, 1154 (1990).Google Scholar
3. Ossau, W., Fischer, S., and Bicknell-Tassius, R. N., J. Crystal Growth 101, 905 (1990); Nakamura, K. and Nakano, H., J. Phys. Soc. Japan 618, 1390 (1992).Google Scholar
4. Kolodziejski, L. A., Bonsett, T. C., Gunshor, R. L., Datta, S., Bylsma, R. B., Becker, W. M. and Otsuka, N., Appl. Phys. Lett. 45, 440 (1984); Bicknell, R. N., Yanka, R. W., Giles-Taylor, N. C., Blanks, D. K., Buckland, E. L. and Schetzina, J. F., Appl. Phys. Lett. 45, 92 (1984).Google Scholar
5. Dubowski, J. J., Thomson, R. J., Rolfe, S. J. and McCaffrey, J. P., Superlatt. Microstruct. 9, 327 (1991); Dubowski, J. J., Roth, A. P., Wasilewski, Z. R. and Rolfe, S. J., Appl. Phys. Lett. 59, 1591 (1991).Google Scholar
6. Blanks, D. K., Bicknell, R. N., Giles-Taylor, N. C., Schetzina, J. F., Petrou, A., and Warnock, J., J. Vac. Sci. Technol. A 4, 2120 (1986).Google Scholar
7. Harper, R. L. Jr., Bicknell, R. N., Blanks, D. K., Giles, N. C., Schetzina, J. F., Lee, Y. R., and Ramdas, A. K., J. Appl. Phys. 65, 624 (1989).Google Scholar
8. Dubowski, J. J., Roth, A. P., Deleporte, E., Peter, G., Feng, Z. C., and Perkowitz, S., J. Crystal Growth 117, 862 (1992).Google Scholar
9. Wang, X., Qiu, C., Labrie, D. and Dubowski, J. J., Thin Solid Films 213, 155 (1992).Google Scholar
10. Labrie, D., Wang, X. and Dubowski, J. J., Can. J. Phys. (in press).Google Scholar