Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-18T11:31:26.696Z Has data issue: false hasContentIssue false

Modification and Study of Polymer Films Using High Energy Ion Beams

Published online by Cambridge University Press:  22 February 2011

T. Venkatesan*
Affiliation:
At&T Bell Laboratories, Murray Hill, New Jersey 07974
Get access

Abstract

Recent results on the effects of high energy ion beam irradiation in polymer films are reviewed in this paper. High energy ions (>10 keV/amu) deposit a large amount of energy (∼several cV/atom) in ionizing the electrons of the target atoms. This results in significant destruction of bonds in the films as a result of which polymers undergo rapid dissociation. Using a quadrupole mass spectrometer the study of transient emission of molecular species produced by an ion pulse has been shown to yield information about the diffusion and reaction kinetics of various molecules in the polymer. The fact that polymers undergo dissociation and those atoms which form volatile species are selectively depleted from the film could be utilized in producing useful inorganic composites by ion bombardment of polymers. For example, hard SiC composite films have been produced by ion beam irradiation of organo-silicon polymers. Eventually, polymer dissociation leads to a predominately carbon containing film which exhibits interesting electronic transport properties. Experiments on ion irradiated, pure carbon films indicate that a metallic form of carbon is produced from the polymer films at high irradiation doses.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Proceedings of the Conference on Ion Beam Modification of Materials, eds. Benenson, R. E., Kaufman, E. N., Miller, G. L., and Scholz, W. W., North-Holland, Amsterdam, (1981).Google Scholar
2. Chu, W. K., Mayer, J. W. and Nicolet, M., Rutherford Backscattering Spectrometry, Academic Press, New York (1978).Google Scholar
3. Wilson, R. G., and Brewer, G. R., Beams, Ion, Krieger, R. E. Publishing Co., Huntington, New York (1979).Google Scholar
4. Northcliffe, L. C., Schilling, R. F., Nuclear Data Table, A–7, 233 (1970).Google Scholar
5. Hall, T. M., Wagner, A. and Thompson, L. F., J. Vac. Sci. and Technol. 16, 1889 (1979).Google Scholar
6. Brown, W. L., Venkatesan, T. and Wagner, A., Solid State Technology, p 60, Aug. 1981;Google Scholar
6a. Nuclear Instrument Meth. 191, 157 (1981) and references therein.CrossRefGoogle Scholar
7. Ryssel, H., Haberger, K. and Kranz, H., J. Vac. Sci and Technol. 19, 1358 (1982).CrossRefGoogle Scholar
8. Calgano, L., Torrissi, L. and Foti, G., Proceedings of Second International Conference on Radiation Effects in Insulators Albuquerque, New Mexico 1983.Google Scholar
9. Bahr, G. R., Johnson, F. B., and Zeitler, E., Lab. Invest. 14, 377 (1965).Google Scholar
10. Hiraoka, H., IBM Jour. Res. and Dev. 21, 121 (1977).Google Scholar
11. Venkatesan, T., Edelson, D., Brown, W. L., Appl. Phys. Lett., (1983).Google Scholar
12. Todd, A., J. Polym. Sci. 42, 223 (1960).Google Scholar
13. Dansworth, J. D., Spiegel, J. and Bloom, J., J. Macronol. Sci. Chem. 7, 1107 (1982).Google Scholar
14. Crank, J. and Park, G. S. (Eds.), Diffusion in Polymers, Academic Press (1968).Google Scholar
15. Berens, A. R. and Hopfenberg, H. B., J. Membrane Sci. 10, 283 (1982).CrossRefGoogle Scholar
16. Venkatesan, T., Wolf, T., Taylor, G. N., Allara, D. and Wilkens, B., Appl. Phys. Letts. Dec. (1983).Google Scholar
17. This polymer was prepared by the method of West and co-workers; West, R., David, L. D., Djurovich, P. I., Stearley, K. L., Srinivasan, K. S. V. and Yu, H., Journ. of Am. Chem. Soc., 103, 7352 (1981).Google Scholar
18. Sichel, E. K. and Emma, T., Solid State Comm. (1982) 41, 747.Google Scholar
19. Carbon Black - Polymer Composites, edited by Sichel, E. K., Published by Marcel Decker Inc., NY (1982).Google Scholar
20. Forrest, S. R., Kaplan, M. L., Schmidt, P. H., Venkatesan, T. and Lovinger, A., Appl. Phys. Lett. (1982) 41, 708.Google Scholar
21. Venkatesan, T., Forrest, S. R., Kaplan, M. L., Murray, C. A., Schmidt, P. H., and Wilkens, B. J., J. Appl. Phys., 54, 3150 (1983).Google Scholar
22. Hioki, T., Noda, S., Sugiura, M., Kakeno, M., Yamada, K., and Kawamoto, J., Appl. Phys. Lett. 43, 30 (1983).Google Scholar
23. Abel, J. S., Mazurek, H., Day, D. R., Maby, E., Sentina, S. D., Dresselhaus, G., and Dresselhaus, M., MRS proceedings, 1982, p.173Google Scholar
24. Abeles, B. and Sheng, P., Coutts, M. D. and Arie, Y., Advances in Phys., 2A, 407 (1975);Google Scholar
24a. Sheng, P., Abeles, B. and Arie, Y., Phys. Rev. Letts. 31, 44 (1973).Google Scholar
25. Venkatesan, T., Dynes, R. C., Wilkens, B., White, A. E., Gibson, J. M., Hamm, R., Proceedings of Second International Conference on Radiation Effects in insulators, Albuquerque, New Mexico, 1983.Google Scholar
26. Hauser, J. J., Solid State Comm. (1975) 17, 1577.Google Scholar
27. Mooij, J. H., Phys. Stat. Sol. (1973) 17, 521.CrossRefGoogle Scholar
28. Venkatesan, T., Feldman, M. L., Wilkens, B. and Willenbroak, W. E. Jr., J. Appl. Phys., Jan. (1984).Google Scholar
29. Morgan, M., Thin Solid Films, (1971) 7, 313.Google Scholar
30. Sander, U., Bukow, H. H. and Von Buttlar, H., J. Phys. Colloq. (1979) 1, 301.Google Scholar
31. Howe, L. M., Rainville, M. H., Harigan, H. K. and Thompson, D. A., Nucl. Instrum. and Meth. (1980) 170, 419.Google Scholar
32. Elman, B. S., Dresselhaus, M. S., Dresselhaus, G., Maloy, B. W. and Mazurele, H., Phys. B24, 1027 (1981).Google Scholar