Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-27T00:51:42.823Z Has data issue: false hasContentIssue false

Modelling of the Thin Organic Film/Carbon Steel Interface

Published online by Cambridge University Press:  17 March 2011

Mihai V. Popa
Affiliation:
Institute of Physical Chemistry, Spl.Independentei 202, 77208, Bucharest, Romania
Paula Drob
Affiliation:
Institute of Physical Chemistry, Spl.Independentei 202, 77208, Bucharest, Romania
Ecaterina Vasilescu
Affiliation:
Institute of Physical Chemistry, Spl.Independentei 202, 77208, Bucharest, Romania
Maria Anghel
Affiliation:
Institute of Physical Chemistry, Spl.Independentei 202, 77208, Bucharest, Romania
Iulia Mirza Rosca
Affiliation:
Las Palmas de Gran Canaria University, Las Palmas, Spain
Agustin Santana Lopez
Affiliation:
Las Palmas de Gran Canaria University, Las Palmas, Spain
Get access

Abstract

The electrochemical impedance spectroscopy (EIS) has been used for the modelling of the alkyd organic film/carbon steel interface in 3% NaCl solution. Both the dielectric properties of the organic film and the corrosion processes of the metallic substrate were investigated with this method. Analysis of the impedance spectra (Nyquist and Bode plots) and the interpretation with the fitting software developed by Boukamp, established the presence of two time constants in the first 250 immersion hours. One time constant concerning the organic layer describes the electrical and barrier properties of film. The second time constant concerning the substrate represents the corrosion reactions at the film/metal interface. For long immersion periods, after the formation of the conductive pathways in the film and the development of the diffusion processes, are necessary another two time constants concerning these phenomenons. The error magnitude between the measured and calculated data with these electric equivalent circuits is satisfactory. The physical properties obtained from the principal elements of the equivalent electric circuits are in concordance with those obtained from others testing methods.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nascimento, G. G. Do, Santos, J. L. C. Dos, Margarit, I. C. P. and Matos, O. R., Electrochimica Acta 41, 1099 (1996).Google Scholar
2. Bucharsky, E. C. and Wilche, J. R., “Organic and Inorganic Coatings for Corrosion Prevention- Research and Experiences”, ed. Fedrizzi, L. and Bonora, P. L. (Institute of Materials, Londra, 1997) pp.222 Google Scholar
3. Mills, D. J. and Boden, P. J., Corrosion Science 35, 1311 (1993).Google Scholar
4. Tato, W. and Landolt, D., Journal of the Electrochemical Society 145, 4713 (1998).Google Scholar
5. Pommier, N., Thiery, L., Gigandet, M. P. and Tachez, M., Annales de Chimie-Science des Materiaux 23, 397 (1998).Google Scholar
6. Drob, P., Vasilescu, E., Popa, M. V., Anghel, M., Lopez, A. Santana and Rosca, I. Mirza, Materials and Corrosion 51, 486 (2000).Google Scholar
7. Compere, C., Frechette, E. and Ghali, E., Corrosion Science 34, 1259 (1993).Google Scholar
8. Bonora, P. L., Deflorian, F. and Fedrizzi, L., Electrochimica Acta 41, 1073 (1996).Google Scholar
9. Weijde, D. H. van der, Westing, E. P. M. van and Wit, J. H. W. de, Electrochimica Acta 41, 1103 (1996).Google Scholar
10. Vogelsang, J., Proceedings of the EUROCORR'96 XI, OR 28, 1 (1996).Google Scholar
11. Xiao, H., Han, L. T., Lee, C. C. and Mansfeld, F., Corrosion 53, 412 (1997).Google Scholar
12. Grandle, J. A. and Taylor, S. R., Corrosion 53, 347 (1997).Google Scholar
13. Miszczyk, A. and Darowicki, K., Corrosion Science 40, 663 (1998),Google Scholar
14. Radovici, O., Drob, P., Popa, M. V., Vasilescu, E., Rosca, I. Mirza, Souto, R. and Anghel, M., “Organic and Inorganic Coatings for Corrosion Prevention- Research and Experiences”, ed. Fedrizzi, L. and Bonora, P. L. (Institute of Materials, Londra, 1997) pp.7182.Google Scholar
15. Mills, D. J., Bierwagen, G. P., Skerry, B. and , Tallman, Materials Perform. 34, 33 (1995).Google Scholar
16. Mills, D. J., Mabbutt, S., Bierwagen, G. P., Pae, Y. and Berg, S., “Proceedings of the 13th International Corrosion Congress” ed. International Corrosion Council (Melbourne, 1996), paper 133.Google Scholar
17. Mabbutt, S. and Mills, D. J., Surface Coatings International 80, 18 (1997).Google Scholar
18. Mansfeld, F., Han, L. T., Lee, C. C., Chen, C., Zhang, G. and Xiao, H., Corrosion Science 39, 255 (1997).Google Scholar
19. Mills, D. J., Mabbutt, S., Lyon, S. and Badger, S., “Proceedings of the 14th International Corrosion Congress” ed. International Corroson Council (Cape Town, 1999), paper 86.Google Scholar
20. Kwiatkowski, L. and Bednarkiewicz, E., “Proceedings of the European Corrosion Congress EUROCORR'99”, ed. DECHEMA (Aachen, 1999), topic 7, paper 11.Google Scholar
21. Boukamp, B., Solid State Ionics 20, 31 (1986).Google Scholar
22. Brasher, D. M. and Kingsbury, A. H., Journal Applied Chemistry 4, 62 (1954).Google Scholar
23. Walter, G. M., Corrosion Science 32, 1041 (1991).Google Scholar