Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T16:48:35.528Z Has data issue: false hasContentIssue false

Modeling of mechanisms of Formation of Quasi-Epitaxial Organic Interfaces

Published online by Cambridge University Press:  15 February 2011

Yajiong Zhang
Affiliation:
Advanced Technology Center for Photonics and Optoelectronics Materials (ATC/POEM), Department of Electrical Engineering, Princeton University, Princeton, NJ08544
S. R. Forrest
Affiliation:
Advanced Technology Center for Photonics and Optoelectronics Materials (ATC/POEM), Department of Electrical Engineering, Princeton University, Princeton, NJ08544
Get access

Abstract

We introduce a model to calculate the static equilibrium configuration between two monolayers of large, planar organic molecules bonded by van der Waals (vdW) forces. The Model significantly simplifies analysis by replacing the conventional atom-atom potential summation with a single ellipsoidal potential centered in the molecular plane. Our results indicate that recent observations of crystalline “quasi-epitaxial” growth of these planar molecular films in ultrahigh vacuum results from the relatively large intralayer elasticity as compared to the small interlayer stress. Good agreement between calculated and observed structures is achieved using no adjustable parameters. The Model is used to predict molecular structures which are likely to form quasi-epitaxial layers. Quasi-epitaxy is a general feature of large planar molecules of similar shape and size in adlayers and substrates where there is comparatively weak vdW bonding between layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Forrest, S. R., Kaplan, M. L. and Schmiddt, P. H., J. Appl. Phys. 56, 543 (1984).CrossRefGoogle Scholar
2. So, F. F., Forrest, S. R., Shi, Y. Q. and Steier, W. H., Appl. Phys. Lett. 56, 674 (1990).CrossRefGoogle Scholar
3. Haskal, E. I., So, F. F., Burrows, P. E. and Forrest, S. R., Appl. Phys. Lett. 60, 3223 (1992).CrossRefGoogle Scholar
4. Burrows, P. E., Zhang, Y., Haskal, E. I. and Forrest, S. R., Appl. Phys. Lett. 61, 2417 (1992).CrossRefGoogle Scholar
5. Burrows, P. E. and Forrest, S. R., Appl. Phys. Lett. 62, 3102 (1993).CrossRefGoogle Scholar
6. Minakata, T., Imai, H., Ozaki, M. and Saco, K., J. Appl. Phys. 72, 5220 (1992).CrossRefGoogle Scholar
7. Nonaka, T., Mori, Y., Nagai, N., Matsunobe, T., Nakagawa, Y., Saeda, M., Takahagi, T. and Ishitani, A., J. Appl. Phys. 73, 2826 (1993).CrossRefGoogle Scholar
8. Reiss, H., J. Appl. Phys. 39, 5045 (1968).CrossRefGoogle Scholar
9. Mctague, J. P. and Novaco, A. D., Phys. Rev. B 19, 5299 (1979).CrossRefGoogle Scholar
10. Zhang, Y. and Forrest, S. R., Phys. Rev. Lett. 71, 2765 (1993).CrossRefGoogle Scholar
11. Itoh, C., Miyazaki, T., Aizawa, K., Aoki, H. and Okazaki, M., J. Phys. C. 21, 4527 (1988).CrossRefGoogle Scholar
12. Kitaigorodsky, A. I., Molecular Crystals and Molecules (Academic, New York, 1973).Google Scholar
13. Scott, R. A. and Scheraga, H. A., J. Chem. Phys. 42, 2209 (1965).CrossRefGoogle Scholar
14. Abe, A., Jernigan, R. L. and Flory, P. J., J. Am. Chem. Soc. 88, 631 (1966).CrossRefGoogle Scholar