Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-24T05:21:14.588Z Has data issue: false hasContentIssue false

Modeling of Atomistic Processes in Semiconductors: from Defect Signatures to a Hierarchy of Annealing Mechanisms

Published online by Cambridge University Press:  26 February 2011

Michel Bockstedte*
Affiliation:
bockstedte@physik.uni-erlangen.de, Universidad de Pais Vasco, Fisica de materiales, Apto 1072, San Sebastian, N/A, Spain
Get access

Abstract

The modeling of atomistic processes in semiconductors based on the density functional theory is outlined. The role of intrinsic defects in the self and dopant diffusion, as well as in the dopant activation is investigated for the case of silicon carbide. A hierarchy of annealing mechanisms for vacancies and interstitials is proposed. The identification of the microscopic origin of experimental defect centers by calculated defect signatures establishes a link between theoretical modeling and experiments.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bockstedte, M., Mattausch, A., and Pankratov, O., Phys. Rev. B 68, 205201 (2003).Google Scholar
2. Ionova, I. V. and Carter, E. A., J. Chem. Phys. 98, 6377 (1993).Google Scholar
3. Van de Walle, Chris G. and Blöchl, E., Phys. Rev. B 45, 4244 (1993).Google Scholar
4. Capaz, R. B., Pino, J. A. Dal, and Joannopoulos, J. D. Phys. Rev. B 58, 9845 (1998).Google Scholar
5. Zywietz, A., Furthmüler, J., and Bechstedt, F., Phys. Rev. B 59, 15166 (1999).Google Scholar
6. Bockstedte, M. and Pankratov, O., Mater. Sci. Forum 338–342, 949 (2000).Google Scholar
7. Lingner, T. et al. , Phys. Rev. B 64, 245212 (2001).Google Scholar
8. Umeda, T., Son, N. T., Isoya, J., Janzén, E., Ohshima, T., Morishita, N., Itoh, H., Gali, A., and Bockstedte, M., Phys. Rev. Lett. 96, 145501 (2006).Google Scholar
9. Itoh, H., Kawasuso, A., Ohshima, T., Yoshikawa, M., Nashiyama, I., Tanigawa, S., Misawa, S., Okumura, H., and Yoshida, S., phys. stat. sol. (a) 162, 173 (1997).Google Scholar
10. Wimbauer, T. et al. , Phys. Rev. B 56, 7384 (1997).Google Scholar
11. , N.T Son et al. , Phys. Rev. B 63, 201201 (2001); ibid Phys. Rev. Lett. 87, 045502 (2001).Google Scholar
12. Bockstedte, M., Heid, M., and Pankratov, O., Phys. Rev. B 67, 193102 (2003).Google Scholar
13. Umeda, T. et al. , Phys. Rev. B 69, 121201 (2004).Google Scholar
14. Mizuochi, N. et al. , Phys. Rev. B 68, 165206 (2003).Google Scholar
15. Umeda, T. et al. Phys. Rev. B 71, 193202 (2005).Google Scholar
16. Son, N. et al. , Mater. Sci. Forum 457–460, 437 (2004).Google Scholar
17. Son, N. T., Umeda, T., Isoya, J., Gali, A., Bockstedte, M., Magnusson, B., Ellison, A., Morishita, N., Oshima, T., Itoh, H., and Janzén, E., Phys. Rev. Lett. 96, 055501 (2006).Google Scholar
18. Bockstedte, , Mattausch, A., and Pankratov, O., Phys. Rev. B 69, 235202 (2004).Google Scholar
19. Torpo, L., Staab, T. E. M., and Nieminen, R. M., Phys. Rev. B 65, 85202 (2002).Google Scholar
20. Mattausch, A., Bockstedte, M., and Pankratov, O., Mater. Sci. Forum 483–485, 523 (2005).Google Scholar
21. Petrenko, T. T. et al. J. Phys. Cond. Matt. 14, 12433 (2002).Google Scholar
22. Son, N. T., Hai, P. N., and Janzén, E., Mater. Sci. Forum 353–356, 499 (2001).Google Scholar
23. Evans, G. A. et al. Phys. Rev. B 66, 35204 (2002).Google Scholar
24. Mattausch, A., Bockstedte, M., and Pankratov, O., Physica B 308–310 (2001), 656; Phys. Rev. B 69, 45322 (2004).Google Scholar
25. Mattausch, A. et al. , Phys. Rev. B 73, 161201(R) (2006).Google Scholar
26. Gali, A. et al. Phys. Rev. B 68, 125201 (2003).Google Scholar
27. Zhang, Y. et al. , J. Appl. Phys. 93, 1954 (2003).Google Scholar
28. Bockstedte, M., Mattausch, A., and Pankratov, O., Matter. Sci. Forum 353–356, 447 (2001).Google Scholar
29. Greulich-Weber, S., phys. stat. solidi (a) 162, 95 (1997).Google Scholar
30. van Duijn-Arnold, A. et al. , Phys. Rev. B 60, 15829 (1999).Google Scholar
31. Fukumoto, A., Phs. Rev. B 53, 4458 (1996).Google Scholar
32. Bockstedte, M., Mattuasch, A., and Pankratov, O., Phys. Rev. B 70, 115203 (2004).Google Scholar
33. Itoh, H. et al. , Appl. Phys. Lett. 73, 1427 (1998).Google Scholar
34. Bockstedte, M., Mattausch, A., and Pankratov, O., Mater. Sci. For. 483–485, 527 (2005).Google Scholar
35. Sridhara, S. G. et al. , J. Appl. Phys. 83, 7909 (1998).Google Scholar
36. Suttrop, W. et al. , Appl. Phys. A 51, 231 (1990).Google Scholar
37. van Duijn-Arnold, A. et al. , Phys. Rev. B 57, 1607 (1998).Google Scholar
38. Soloviev, S. I., Gao, Y., and Sudarshan, T.S., Appl. Phys. Lett. 77, 4004 (2000).Google Scholar
39. Laube, M., Pensl, G., and Itoh, H, Appl. Phys. Lett. 74, 2292 (1999).Google Scholar
40. Gong, M. et al. , Appl. Phys. Lett. 72, 2739 (1998).Google Scholar
41. Gao, Y., Scoloviev, S. I., and Sudarshan, T.S., Appl. Phys. Lett. 83, 905 (2003).Google Scholar
42. Mokhov, E.N., Goncharov, E.E., and Ryabova, G.G., Sov. Phys. Semicond. 18, 27 (1984).Google Scholar
43. Konstantinov, A.O., Sov. Phys. Semicond. 26, 151 (2000).Google Scholar
44. Bracht, H., Stolwijk, N.A., laube, M., and Pensl, G., Appl. Phys. Lett. 77, 3188 (2000).Google Scholar
45. Mokhov, E.N. et al. , Sov. Phys. Semicond. 30, 140 (1988).Google Scholar