Skip to main content Accessibility help
×
Home

Modeling and Characterization of Silicon Nanowire Networks for Thermoelectric Conversion

  • Kate J. Norris (a1) (a2), Andrew J. Lohn (a1) (a2), Elane Coleman (a3), Gary S. Tompa (a3) and Nobuhiko P. Kobayashi (a1) (a2)...

Abstract

We report the growth of silicon nanowires by plasma assisted metal organic chemical vapor deposition. Silicon nanowires grew as three-dimensional networks in which electrical charges and heat can travel over the distance much longer than the mean length of the constituent nanowires. We studied the dependence of thermoelectric properties on two factors; nominal doping concentrations and geometrical factors within the silicon nanowire networks. The silicon nanowire networks show Seebeck coefficients comparable with that of bulk silicon for a given nominal doping concentration, allowing us to control Seebeck coefficients by tuning the doping concentrations. Rather than studying single nanowires, we chose networks of nanowires formed densely across large areas required for large scale production. We also studied the role played by intersections where multiple nanowires were fused to form the nanowire networks. Structural analysis, transport measurement, and modeling based on finite-element analysis were carried out to obtain insights of physical properties at the intersections. Understanding these physical properties of three-dimensional nanowire networks will advance the development of thermoelectric devices.

Copyright

References

Hide All
2. Husband, W.W. and Beyene, A., Int. J. Energy Res. 32, 1373 (2008).10.1002/er.1442
3. Li, Jing-Feng, et al. ., NPG Asia Materials 2, 152 (2010).10.1038/asiamat.2010.138
4. Harman, T.C., et al. ., Mater. 34, L19 (2005).
5. Walachová, J., Zeipl, R., Zelinka, J. and Malina, V.. Appl. Phys. Lett. 87.8, 081902 (2005).10.1063/1.2001755
6. Lohn, A.J., Coleman, E., Tompa, G.S., Kobayashi, N.P., Phys. Status Solid A 209, 171 (2012).10.1002/pssa.201127388
7. Venkatasubramanian, R., Siivola, E., Colpitts, T., and O’Quinn, B., Nature 413, 597 (2001).10.1038/35098012
8. Vineis, C.J., et al. ., Advanced Materials 22.36 3970 (2010).10.1002/adma.201000839
9. Lu, Hong, et al. ., Adv. Mater. 23, 2377 (2011).10.1002/adma.201100449
10. Hicks, L.D., Dresselhaus, M.S., Phys. Rev. B 47, 12727 (1993).10.1103/PhysRevB.47.12727
11. Ohta, H. et al. ., Nat. Mater. 6, 129 (2007).10.1038/nmat1821
12. Li, Deyu, et al. ., Appl. Phys. Lett. 83, 2934 (2003).10.1063/1.1616981
13. Hicks, L.D. and Dresselhaus, M.S., Phys. Rev. B 47, 16631 (1993).10.1103/PhysRevB.47.16631
14. Hochbaum, A.I., et al. ., Nature 451, 163 (2008).10.1038/nature06381
15. Shi, Lihong, et al. ., Appl. Phys. Lett. 95, 063102 (2009).10.1063/1.3204005
16. Druzhinin, Anatoly, et al. ., Phys. Status Solidi C 8, No. 3, 867 (2011).10.1002/pssc.200900266
17. Boukai, A.I. et al. ., Nature 451, 168 (2008).10.1038/nature06458
18. Tsakalaskos, L., et al. , Appl. Phys. Lett. 91, 233117 (2007).10.1063/1.2821113
19. Cahill, et al. ., J. Appl. Phys., 93, 15 (2003)10.1063/1.1524305
20. Yamada, T., Yamada, H., Lohn, A.J., and Kobayashi, N.P., Proc.. of SPIE 8106, 810601 (2011).
21. Majkova, E., et al. ., Phys. Status Solid B 153, K147 (1989).10.1002/pssb.2221530247

Keywords

Modeling and Characterization of Silicon Nanowire Networks for Thermoelectric Conversion

  • Kate J. Norris (a1) (a2), Andrew J. Lohn (a1) (a2), Elane Coleman (a3), Gary S. Tompa (a3) and Nobuhiko P. Kobayashi (a1) (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed