Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-07-07T20:08:27.486Z Has data issue: false hasContentIssue false

A Model for the Laser-Induced Chemical Vapor Deposition of Hydrogenated Amorphous Silicon

Published online by Cambridge University Press:  21 February 2011

M. Meunier
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139
J.H. Flint
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139
D. Adler
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139
J.S. Haggerty
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139
Get access

Abstract

We propose a model for laser-induced chemical vapor deposition in which the growth of hydrogenated amorphous silicon (a-Si:H) thin films is rate-controlled by the gas phase homogeneous thermal dissociation of SiH4 The gas temperature is determined by a steady-state balance between energy absorbed from the laser and energy lost by thermal conduction.The film properties are primarily controlled by the substrate temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Materials Research Society Symposia Proceedings, Laser Diagnostics and Photochemical Processing for Semiconductor Devices, 17, R.M.Osgood,S.R.J.Brueck and H.R.Schlossberg, eds.(North Holland 1983).Google Scholar
2. Christensen, C.P. and Lakin, K.M., Appl.Phys.Lett., 32, 254 (1978).Google Scholar
3. Hanabusa, M., Namiki, A., Yoshihara, K., Appl.Phys.Lett., 35.626 (1979).Google Scholar
4. Gattuso, T.R., Meunier, M., Adler, D. and Haggerty, J.S. in: Materials Research Society Symposia Proceedings, Laser Diagnostics and Photochemical Processing for Semiconductor Devices, 17, R. M. Osgood, S.R.J.Brueck and H.R.Schlossberg, eds.(North Holland 1983) pp. 215–22.Google Scholar
5. Meunier, M., Gattuso, T.R., Adler, D. and Haggerty, J.S., Appl.Phys.Lett., 43, 273–5 (1983).Google Scholar
6. Bilenchi, R., Gianinoni, I. and Musci, M., J.Appl.Phys., 53, 6479–81 (1982).Google Scholar
7. Scott, B.A., Plecenik, R.M. and Simonyi, E.E., Appl.Phys.Lett., 39, 73 (1981).Google Scholar
8. Meunier, M., Flint, J.H., Adler, D. and Haggerty, J.S. in: Proceedings of the 10th International Conference on Liquid and Amorphous Semiconductors Tokyo 1983, J.Non.Cryst.Solids, (in press).Google Scholar
9. Hasegawa, S., Kasajima, T. and Shimizu, T., Phil.Mag., B, 43, 149–56 (1981).Google Scholar
10. Hey, P. and Seraphin, B.O., Solar Energy Materials, 8, 215–30 (1982).Google Scholar
11. Scott, B.A., Reimer, J.A., Plecenik, R.M., Simonyi, E.E. and Reute, W., Appl.Phys.Lett., 40, 973 (1982).Google Scholar
12. Fritzsche, H., Sol.En.Mat., 3, 447–501 (1980).Google Scholar
13. Longeway, P.A. and Lampe, F.W., J.Am.Chem.Soc., 103, 6813–8 (1981).Google Scholar
14. Levine, R.D. and Bernstein, R.B., Molecular Radiation Dynamics (Oxford University Press, NY Chap.5, 1974).Google Scholar
15. See for example Arpaci, Conduction Heat Transfer, (Addison-Wesley, Reading, MA 1966).Google Scholar
16. Johns, J.W.C. and Kreiner, W.A., J.Mol.Spec., 60, 400–11 (1976).Google Scholar
17. Mitchell, A.C.G. and Zemansky, M.W., Resonance Raiation and Excited Atoms, (Cambridge University Press, Cambridge, U.K. 1961).Google Scholar
18. Newman, C.G., O'Neal, H.E., Ring, M.A., Leska, F. and Shipley, N.,Int. J.Chem.Kinetics, 11, 1167 (1979).Google Scholar
19. Sladek, K.J., J.ElectrocFemical Soc., 118, 654 (1971).Google Scholar
20. Beers, A.M. and Bloem, J., Appl.Phys.Lett., 41, 153 (1982).Google Scholar