Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T22:07:42.162Z Has data issue: false hasContentIssue false

A Model for Ion-Assisted Molecular Beam Epitaxy and Application to Synthesis of Epitaxial SNxGE1-x Alloy Films

Published online by Cambridge University Press:  21 February 2011

Gang He
Affiliation:
Laboratory of Applied Physics California Institute of Technology, Pasadena, CA 91125
Harry A. Atwater
Affiliation:
Laboratory of Applied Physics California Institute of Technology, Pasadena, CA 91125
Thomas J. Watson
Affiliation:
Laboratory of Applied Physics California Institute of Technology, Pasadena, CA 91125
Get access

Abstract

In this work, we develop a model for ion-assisted molecular beam epitaxy with application to synthesis of epitaxial SnxGe1-x/Ge/Si(001) with compositions up to x=0.34. The model describes the effect of energetic beam deposition on surface segregation during thin film growth. As the value of a Péclet number expressing the ratio of surface ion-mixing rate to growth rate exceeds unity, the segregation coefficient during ion-assisted growth exceeds the value during thermal growth. A comparison of the model with experiments for SnxGei.1-x synthesis is reported. The experimental results are consistent with the model.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Jenkins, D.W. and Dow, J.D., Phys. Rev. B 36 (1987) 7994.Google Scholar
2 Craig, B.I., Superlattices and Microstructures 12 (1992) 1.Google Scholar
3 Saipetch, C. and Atwater, H.A., unpublished.Google Scholar
4 Kaxiras, E., unpublished.Google Scholar
5 Harwit, A., Pukite, P.R., Angilello, J. and Iyer, S.S., Thin Solid Films 184 (1990) 395. Google Scholar
6 Piao, J., Beresford, R., Licata, T., Wang, W.I. and Homma, H., J. Vac. Sci. Technol. B 8 (1990)221.Google Scholar
7 Wegscheider, W., Eberl, K., Menczigar, U. and Abstreiter, G., Appl. Phys. Lett. 57 (1990) 875.Google Scholar
8 Gossmann, H.-J., J. Appl. Phys. 68 (1990) 2791.Google Scholar
9 Fitzgerald, E.A., Freeland, P.E., Asom, M.T., Lowe, W.P., Macharrie, R.A. JR., Weir, B.E., Kortan, A.R., Thiel, F.A., Xie, Y.-H., Sergent, A.M., Cooper, S.L., Thomas, G.A. and Kimerling, L.C., J. Elec. Mat. 20 (1991) 489.Google Scholar
10 Eberl, K., Wegscheider, W. and Abstreiter, G., J. Crystal Growth 111 (1991) 882.Google Scholar
11 Vogl, P., Olajos, J., Wegscheider, W. and Abstreiter, G., Surface Science 267 (1992) 83.Google Scholar
12 Wegscheider, W., Olajos, J., Menczigar, U., Dondl, W. and Abstreiter, G., J. Crystal Growth 123 (1992) 75.Google Scholar
13 Shah, S.I., Greene, J.E., Abels, L.L., Yao, Q. and Raccah, P.M., J. Crystal Growth 83 (1987) 3.Google Scholar
14 Oguz, S., Paul, W., Deutsch, T.T., Tsaur, B-Y. and Murphy, D.V., Appl. Phys. Lett. 43 (1983) 848.Google Scholar
15 Chang, I.T.H, Cantor, B. and Cullis, A.G., J. Non-Crystalline Solids 117/118 (1990) 263.Google Scholar
16 Lee, S.M., J. Appl. Phys. 75 (1994) 1987.Google Scholar
17 Soma, T., Matsuo, H. and Kagaya, S., Phys. Stat. Solid. 105 (1981) 311.Google Scholar
18 Massalski, T.B., Binary Alloy Phase Diagrams, vol.2, Am. Soc. Metals, 1986.Google Scholar
19 Farrow, R.F.C, Robertson, D.S., Williams, G.M., Cullis, A.G., Jones, G.R., Young, I.M. and Dennis, P.N.J., J. Crystal Growth 54 (1981) 507.Google Scholar
20 Reno, J.L. and Stephenson, L.L., Appl. Phys. Lett. 54 (1989) 2207.Google Scholar
21 Asom, M.T., Kortan, A.R., Kimerling, L.C. and Farrow, R.C., Appl. Phys. Lett. 55 (1989) 1439.Google Scholar
22 Ito, T. Jpn., J. Appl. Phys. 31 (1992) L920.Google Scholar
23 Knall, J., Sundgren, J.-E., Markert, L.C. and Greene, J.E., Surface Science 214 (1989) 149.Google Scholar
24 He, G., Atwater, H.A., submitted to Appl. Phys. Lett.Google Scholar
25 Atwater, H.A., He, G., Saipetch, C., to be published in Mat. Res. Soc. Symp. Proc. 355 (1995).Google Scholar
26 Tsao, J.Y., Materials Fundamentals of Molecular Beam Epitaxy, Academic Press, San Diego, 1993.Google Scholar
27 Aziz, M.J., J. Appl. Phys. 53 (1982) 1158.Google Scholar
28 Goldman, L.M., Aziz, M.J., J. Mater. Res. 2 (1987) 524.Google Scholar
29 Aziz, M.J. and Kaplan, T., Acta metall. 36 (1988) 2335.Google Scholar