Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-07-01T10:31:03.212Z Has data issue: false hasContentIssue false

MOCVD Precursor Delivery Monitored and Controlled Using UV Spectroscopy

Published online by Cambridge University Press:  15 February 2011

Brian J. Rappoli
Affiliation:
Chemistry Division and Electronics Science and Technology Division, Naval Research Laboratory, Washington, DC. 20375
William J. DeSisto
Affiliation:
Chemistry Division and Electronics Science and Technology Division, Naval Research Laboratory, Washington, DC. 20375
Tobin J. Marks
Affiliation:
Department of Chemistry and Science and Technology Center for Superconductivity, Northwestern University, Evanston, IL. 60208
John A. Belot
Affiliation:
Department of Chemistry and Science and Technology Center for Superconductivity, Northwestern University, Evanston, IL. 60208
Get access

Abstract

The glyme adducts of bis(1,1,1,5,5,5-hexafluoro-2,4-pentanedionate)barium, Ba(hfac)2•glyme, are frequently employed as precursors in the MOCVD fabrication of HTSC thin films. The physical properties of these precursors can be modified by changing the glyme ligand in the barium complex. In this study, gas phase concentrations of two barium complexes as a function of purge time and bubbler temperature have been examined by in-situ UV spectroscopy. Also presented are the details of a UV spectrophotometric-based feedback control system designed to maintain constant gas phase concentration of 2,2,6,6-tetramethyl-3,5-heptadionate (thd) precursors, Cu(thd)2 and Y(thd)3, during MOCVD growth of mixed metal oxide films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sato, R., Takahashi, K., Yoshino, M., Kato, H., and Ohshima, S., Jpn. J. Appl. Phys. 32, 1590(1993).Google Scholar
2. Matsuno, S., Uchikawa, F. and Yoshizaki, K., Jpn. J. Appl. Phys. 29, 947 (1990).Google Scholar
3. Schulz, D. L., Hinds, B. J., Neumayer, D. A., Stern, C. L. and Marks, T. J., Chem. Mater. 5, 1605(1993).Google Scholar
4. Hinds, B. J., Schulz, D. L., Neumayer, D. A., Han, B., Marks, T. J., Wang, Y. Y., Dravid, V. P., Schindler, J. L., Hogan, T. P. and Kannewurf, C. R., Appl. Phys. Lett. 65, 231 (1994).Google Scholar
5. Hiskes, R., DiCarolis, S.A., Young, J.L., Laderman, S.S., Jacowitz, R.D., and Taber, R.C., Appl. Phys. Lett. 59, 606 (1991).Google Scholar
6. Zhang, J., Gardiner, R. A., Kirlin, P. S., Boerstler, R. W. and Steinbeck, J., Appl. Phys. Lett. 61, 2884(1992).Google Scholar
7. Stagg, J. P., Chemtronics 3, 44 (1988).Google Scholar
8. Butler, B. R. and Stagg, J. P., J. Crystal Growth 94, 481 (1989).Google Scholar
9. Stagg, J. P., Christer, J., Thrush, E. J. and Crawley, J., J. Crystal Growth 120, 98(1992).Google Scholar
10. Huang, L., Turnipseed, S.B., Haltiwanger, R.C., Barkly, R.M. and Sievers, R.E., Inorg. Chem. 33, 798 (1994).Google Scholar
11. Rappoli, B.J. and Desisto, W.J., Mat. Res. Soc. Symp. Proc. 415, 149 (1996).Google Scholar
12. Zhao, J., Dahmen, K.H., Marcy, H.O., Tonge, L.M., Marks, T.J., Wessels, B.W. and Kannewurf, C.R., Appl. Phys. Lett. 53, 1750 (1988).Google Scholar
13. Timmer, K., Spee, K.D.M., Mackor, A., Meinema, H.A., Spek, A.L. and van der Sluis, P., Inorg. Chim. Acta 190, 109 (1991).Google Scholar
14. Malandrino, G., Richeson, D.S., Marks, T.J., DeGroot, D.C., Schindler, J.L. and Kannewurf, C.R., Appl. Phys. Lett. 58, 182 (1991).Google Scholar
15. Gardiner, R., Brown, D.W., Kirlin, P.S. and Rheingold, A.L., Chem. Mater. 3, 1053(1991).Google Scholar
16. Neumayer, D.A., Studebaker, D.B., Hinds, B.J., Stern, C.L. and Marks, T.J., Chem. Mater. 6, 878(1994).Google Scholar
17. Rappoli, B.J. and DeSisto, W.J., Appl. Phys. Lett. 68, 2726 (1996).Google Scholar
18. Tobaly, P. and Watson, I.M., J. Chem. Thermodynamics 27, 1211 (1995).Google Scholar