Skip to main content Accessibility help

MOCVD Precursor Delivery Monitored and Controlled Using UV Spectroscopy

  • Brian J. Rappoli (a1), William J. DeSisto (a1), Tobin J. Marks (a2) and John A. Belot (a2)


The glyme adducts of bis(1,1,1,5,5,5-hexafluoro-2,4-pentanedionate)barium, Ba(hfac)2•glyme, are frequently employed as precursors in the MOCVD fabrication of HTSC thin films. The physical properties of these precursors can be modified by changing the glyme ligand in the barium complex. In this study, gas phase concentrations of two barium complexes as a function of purge time and bubbler temperature have been examined by in-situ UV spectroscopy. Also presented are the details of a UV spectrophotometric-based feedback control system designed to maintain constant gas phase concentration of 2,2,6,6-tetramethyl-3,5-heptadionate (thd) precursors, Cu(thd)2 and Y(thd)3, during MOCVD growth of mixed metal oxide films.



Hide All
1. Sato, R., Takahashi, K., Yoshino, M., Kato, H., and Ohshima, S., Jpn. J. Appl. Phys. 32, 1590(1993).
2. Matsuno, S., Uchikawa, F. and Yoshizaki, K., Jpn. J. Appl. Phys. 29, 947 (1990).
3. Schulz, D. L., Hinds, B. J., Neumayer, D. A., Stern, C. L. and Marks, T. J., Chem. Mater. 5, 1605(1993).
4. Hinds, B. J., Schulz, D. L., Neumayer, D. A., Han, B., Marks, T. J., Wang, Y. Y., Dravid, V. P., Schindler, J. L., Hogan, T. P. and Kannewurf, C. R., Appl. Phys. Lett. 65, 231 (1994).
5. Hiskes, R., DiCarolis, S.A., Young, J.L., Laderman, S.S., Jacowitz, R.D., and Taber, R.C., Appl. Phys. Lett. 59, 606 (1991).
6. Zhang, J., Gardiner, R. A., Kirlin, P. S., Boerstler, R. W. and Steinbeck, J., Appl. Phys. Lett. 61, 2884(1992).
7. Stagg, J. P., Chemtronics 3, 44 (1988).
8. Butler, B. R. and Stagg, J. P., J. Crystal Growth 94, 481 (1989).
9. Stagg, J. P., Christer, J., Thrush, E. J. and Crawley, J., J. Crystal Growth 120, 98(1992).
10. Huang, L., Turnipseed, S.B., Haltiwanger, R.C., Barkly, R.M. and Sievers, R.E., Inorg. Chem. 33, 798 (1994).
11. Rappoli, B.J. and Desisto, W.J., Mat. Res. Soc. Symp. Proc. 415, 149 (1996).
12. Zhao, J., Dahmen, K.H., Marcy, H.O., Tonge, L.M., Marks, T.J., Wessels, B.W. and Kannewurf, C.R., Appl. Phys. Lett. 53, 1750 (1988).
13. Timmer, K., Spee, K.D.M., Mackor, A., Meinema, H.A., Spek, A.L. and van der Sluis, P., Inorg. Chim. Acta 190, 109 (1991).
14. Malandrino, G., Richeson, D.S., Marks, T.J., DeGroot, D.C., Schindler, J.L. and Kannewurf, C.R., Appl. Phys. Lett. 58, 182 (1991).
15. Gardiner, R., Brown, D.W., Kirlin, P.S. and Rheingold, A.L., Chem. Mater. 3, 1053(1991).
16. Neumayer, D.A., Studebaker, D.B., Hinds, B.J., Stern, C.L. and Marks, T.J., Chem. Mater. 6, 878(1994).
17. Rappoli, B.J. and DeSisto, W.J., Appl. Phys. Lett. 68, 2726 (1996).
18. Tobaly, P. and Watson, I.M., J. Chem. Thermodynamics 27, 1211 (1995).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed