Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-29T11:09:54.556Z Has data issue: false hasContentIssue false

MOCVD of Ir and IrO2 Thin Films for PZT Capacitors

Published online by Cambridge University Press:  21 March 2011

M. Shimizu*
Affiliation:
Department of Electronics, Faculty of Engineering, Himeji Institute of Technology, 2167 Shosha, Himeji, Hyogo 671-2201, Japan
K. Kita
Affiliation:
Department of Electronics, Faculty of Engineering, Himeji Institute of Technology, 2167 Shosha, Himeji, Hyogo 671-2201, Japan
H. Fujisawa
Affiliation:
Department of Electronics, Faculty of Engineering, Himeji Institute of Technology, 2167 Shosha, Himeji, Hyogo 671-2201, Japan
H. Niu
Affiliation:
Department of Electronics, Faculty of Engineering, Himeji Institute of Technology, 2167 Shosha, Himeji, Hyogo 671-2201, Japan
Get access

Abstract

Ir films were prepared on SiO2/Si at 275-500°C by M°CVD (Metalorganic Chemical Vapor Deposition) using a new Ir precursor, Ir(EtCp)(cod) (iridium(ethylcyclopentadienyl) (1,5-cyclo°Ctadiene): Ir(C2H5C5H4)(1,5-C8H12). Ir films prepared at 275-300°C showed highly reflecting surfaces with Rrms roughness (root-mean-square roughness) of 1.4-10nm. At 500°C, Ir and IrO2 mixture-oriented films were grown. Ir films deposited at 300°C on patterned SiO2/Si substrates with aspect ratios of 0.3-2.0 showed good step coverage of 70-85%. Auger analysis revealed that Ir film had no incorporation of carbon and oxygen, and that Ir films performed well as a diffusion barrier in PZT/Ir/SiO2/Si structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakamura, T., Nakao, Y., Kamisawa, A. and Takasu, H., Appl.Phys.Lett., 65, 1522 (1994).10.1063/1.112031Google Scholar
2. Nakamura, T., Nakao, Y., Kamisawa, A. and Takasu, H., Jpn.J.Appl.Phys., 33, 5207 (1994).Google Scholar
3. Shimizu, M., Fujisawa, H., Hyodo, S., Nakashima, S. and Niu, H., Mater.Res.Soc.Symp.Proc., 493, 159 (1998).10.1557/PROC-493-159Google Scholar
4. K-Abdelghafar, K. and Fujisaki, Y., Jpn.J.Appl.Phys., 37, L804 (1998).Google Scholar
5. Sakoda, T., Aoki, K. and Fukuda, Y., Jpn.J.Appl.Phys., 38, 5162 (1999).10.1143/JJAP.38.5162Google Scholar
6. Moise, T.S., Sommerfelt, S.R., Xing, G., Colomb, L., Sakoda, T., Gilbert, S.R., Loke, A., Ma, S., Kavari, R., Wills, L.A., Hsu, T., Amano, J., Johnston, S.T., Vestyck, D.J., Russel, M.W. and Bilodeau, S.M., Int.Electron Device Meet.Tech.Dig., 940 (1999).Google Scholar
7. Hoke, J.B., Stern, E.W. and Murry, H.M., J.Mater.Chem., 1, 551 (1991).10.1039/jm9910100551Google Scholar
8. Dey, S.K., Goswami, J., Wang, C-G. and Majhi, P., Jpn.J.Appl.Phys., 38, L1052 (1999).10.1143/JJAP.38.L1052Google Scholar
9 Sun, Y.-M., Yan, X.-M., Mettlach, N., Endle, J.P., Kirch, P.D., Ekerdt, J.G., Madhukar, S., Hance, R.L. and White, J.M., J.Vac.Sci.Technol., A18, 10 (2000).10.1116/1.582151Google Scholar
10. Gelfond, N.V., Tuzikov, F.V. and Igumenov, I.K., Thin Solid Films, 227, 144 (1993).10.1016/0040-6090(93)90032-KGoogle Scholar
11. Vergas, R., Goto, T., Zhang, W. and Hirai, T., Appl.Phys.Lett., 65, 1094 8 (1994).Google Scholar
12. Sun, Y.-M., Endle, J.P., Smith, K., Whaley, S., Mahaffy, R., Ekerdt, J.G., White, J.M. and Hance, R.L., Thin Solid Films, 346, 100 (1999).10.1016/S0040-6090(98)01458-8Google Scholar
13. Gerfin, T., Halg, W.J., Atamny, F. and Dahmen, K., Thin Solid Films, 241, 352 (1993).10.1016/0040-6090(94)90456-1Google Scholar
14. Xu, C., Dimeo, F. Jr, Baum, T.H. and Russel, M., Mater.Res.Soc.Symp.Proc., 541, 129 (1999).10.1557/PROC-541-129Google Scholar
15.Japanese Patent Laid-open No.11-292888 (1999).Google Scholar
16. Shimizu, M., Kita, K., Fujisawa, H., Tomozawa, N. and Niu, H., in Proc. 12th IEEE Int.Symp. Applications of Ferroelectrics (in press).Google Scholar