Skip to main content Accessibility help
×
Home

MOCVD of GaN-based HEMT structures on 8 inch silicon substrates

  • Oleg Laboutin (a1), Chien-Fong Lo (a1), Chen-Kai Kao (a1), Kevin O’Connor (a1), Wayne Johnson (a1) and Daily Hill (a1)...

Abstract

Metal organic chemical vapor deposition, as well as material and basic device properties of nitride-based high electron mobility transistor structures on (111) silicon substrates varying in diameter from 4 to 8 inch were studied using in-situ and ex-situ characterization techniques. All substrates used for the growth of the nitride structures in this study were of SEMI standard thicknesses. The total thickness of the nitride structures was in the range of 1.5 – 5 µm. It is reported that nitride structures can be grown on 4, 6 and 8 inch diameter substrates with very similar post-growth wafer shape, material and device characteristics. It is also shown that their crystal quality, 2DEG transport properties and isolation blocking voltages can be improved by increasing nitride structure thickness while maintaining post-growth wafer bow and warp less than 50 µm. The maximum thickness of nitride structures that can be successfully grown on 8 inch diameter SEMI standard substrates seems to be limited to about 4.5 µm due to plastic deformation of Si. Blocking voltages of more than 700 V were achieved using 4.5 µm thick nitride-based high electron mobility transistor structures grown on 8 inch Si substrate.

Copyright

References

Hide All
1. Egawa, T. and Shuhaimi, A., J. Physics D: Appl. Physics 43, 354008 (2010)
2. Raghavan, S. and Redwing, J. M., J. Appl. Phys. 98, 023514 (2005)
3. Raghavan, S., Weng, X., Dickey, E. and Redwing, J. M., Appl. Phys. Lett. 88, 041904 (2006)
4. Schultz, O., Dadgar, A., Hennig, J., Krumm, O., Fritze, S., Blasing, J., Witte, H., Diez, A. and Krost, A., Phys. Status Solidi C 11, 3–4, 397 (2014)
5. Dadgar, A., Fritze, S., Schultz, O., Hennig, J., Blasing, J., Witte, H., Diez, A., Heinle, U., Kunze, M., Daumiller, I., Haberland, K. and Krost, A., J. Crystal Growth 370, 278, 2013
6. Marchand, H., Zhao, L., Zhang, N., Moran, B., Coffie, R., Mishra, U. K., Speck, J. S., DenBaars, S. P. and Freitas, J. A., J. Appl. Physics 89, 12, 7846 (2001)
7. Reiher, A., Blasing, J., Dadgar, A., Diez, A., and Krost, A., J. Cryst. Growth 248, 563 (2003)
8. Zhang, B. S., Wu, M., Liu, J. P., Chen, J., Zhu, J. J., Shen, X. M., Feng, G., Zhao, D. G., Wang, Y. T., Yang, H., and Boyd, A. R., J. Cryst. Growth 270, 316 (2004)
9. Amano, H., Iwaya, M., Kashima, T., Katsuragawa, M., Akasaki, I., Han, J., Hearne, S., Floro, J. A., Chason, E., Figiel, J., Jpn. J. Appl. Phys. 37 (Part 2), L1540 (1998)
10. Feltin, E., Beaumont, B., Laugt, M., de Mierry, P., Vennegues, P., Lahreche, H., Leroux, M., and Gibart, P., Appl. Phys. Lett. 79, 3230 (2001)
11. Selvaraj, S. L., Suzue, T. and Egawa, T., IEEE Electron Device Lett v. 30, 6, 587 (2009)
12. Cheng, K., Liang, H., Van Hove, M., Greens, K., De Jaeger, B., Srivastava, P., Kang, X., Favia, P., Bender, H., Decoutere, S., Dekoster, J., Borniquel, J., Jun, S. and Chung, H., Appl. Phys. Express 5, 011022 (2012)
13. Tripathy, S., Lin, V. K. X., Dolmanan, S. B., Tan, J. P. Y., Kajen, R. S., Bera, L. K., Teo, S. L., Kumar, M. K., Arulkumaran, S., Ng, G. I., Vicknesh, S., Todd, S., Wang, W. Z., Lo, G. Q., Li, H., Lee, D. and Han, S., Appl. Phys. Lett. 101, 082110 (2012)
14. Arulkumaran, S., Ng, G. I., Vicknesh, S., Wang, H., Ang, K. S., Tan, J. P. Y., Lin, V. K., Todd, S., Lo, G. Q., and Tripathy, S., Jpn. J. Appl. Phys. 51, 111001 (2012)
15. Yano, Y., Tokunaga, H., Shimamura, H., Yamaoka, Y., Ubukata, A., Tabuchi, T. and Matsumoto, K., Jpn. J. Appl. Phys. 52, 08JB06 (2013)
16. Christy, D., Egawa, T., Yano, Y., Tokunaga, H., Shimamura, H., Yamaoka, Y., Ubukata, A., Tabuchi, T. and Matsumoto, K., Appl. Phys. Express 6, 026501 (2013)
17. Zhao, M., Sirapalli, Y., Kandaswamy, P. K., Liang, H., Firrincieli, A., Decoutere, S. and Vancoille, E., Phys. Status Solidi C 11, 446 (2014)
18. Tripathy, S., Kyaw, L. M., Dolmanan, S. B., Ngoo, Y. J., Liu, Y., Bera, M. K., Singh, S. P., Tan, H. R., Bhat, T. N. and Chor, E. F., ECS Journal of Solid State Science and Technology 3, Q84 (2014)

Keywords

Related content

Powered by UNSILO

MOCVD of GaN-based HEMT structures on 8 inch silicon substrates

  • Oleg Laboutin (a1), Chien-Fong Lo (a1), Chen-Kai Kao (a1), Kevin O’Connor (a1), Wayne Johnson (a1) and Daily Hill (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.