Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-19T20:17:54.827Z Has data issue: false hasContentIssue false

Mobility-Lifetime Products in Glow Discharge and RF Sputter Deposited A-Si:H

Published online by Cambridge University Press:  16 February 2011

M. H. Farias
Affiliation:
Department of Physics, University of Puerto Rico, Rio Piedras, PR 00931
A. Roche
Affiliation:
Department of Physics, University of Puerto Rico, Rio Piedras, PR 00931
S. Z. Weisz
Affiliation:
Department of Physics, University of Puerto Rico, Rio Piedras, PR 00931
H. Jia
Affiliation:
Ames Laboratory - USDOE and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011
J. Shinar
Affiliation:
Ames Laboratory - USDOE and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011
Y. Lubianiker
Affiliation:
Racah Institute of Physics, Hebrew University, Jerusalem, 91904, Israel
I. Balberg
Affiliation:
Racah Institute of Physics, Hebrew University, Jerusalem, 91904, Israel
Get access

Abstract

A comparative study of the deposition temperature (Ts) dependence of the Mobility-lifetime (μτ) products of the charge carriers in glow-discharge and rf sputter-deposited a-Si:H is described and discussed. The Ts-dependence of the μτ's the majority carrier light-intensity exponents of the two types of films are strikingly similar. These observations lead to the conclusion that the structure of the recombination levels as well as the recombination processes are in accord with the “defect pool” Model, in contrast to previous suggestions. The differences between the two types of films thus appear to be limited to the differences in the concentrations of dangling bonds.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Amorphous Silicon Technology - 1992, edited by Thompson, M. J., Hamakawa, Y., LeComber, P. G., Madan, A., and Schiff, E., Mat. Res. Soc. Symp. Proc. 258 (1992).Google Scholar
2. J. Non Cryst. Sols. 114 (1989).Google Scholar
3. Manan, A. H. et al., J. Appl. Phys. 69, 6728 (1991).Google Scholar
4. Branz, H. M., Phys. Rev. B 39, 5107 (1989).Google Scholar
5. Morgado, E., in ref. 1, p. 765.Google Scholar
6. Schumm, G., Jackson, W. B., and Street, R. A., Phys. Rev. B 48, 14198 (1993).Google Scholar
7. Wang, F. and Schwarz, R., J. Appl. Phys. 73, 1082 (1993).Google Scholar
8. Morgado, E., J. Non Cryst. Sol., 164–166, 627 (1993).Google Scholar
9. Baiberg, I., J. Appl. Phys. 75, 914 (1994).CrossRefGoogle Scholar
10. Jousse, D. et al., J. Non Cryst. Sol. 77&78, 627 (1985).CrossRefGoogle Scholar
11. Thompson, M. J., in The Physics of Hydro genated Amorphous Silicon, Vol. I, edited by Joannopoulos, J. and Lucovsky, G. (Springer, NY, 1984), Chapter 4.Google Scholar
12. Pinchasi, M., Kushner, M. J., and Abelson, J. R., J. Appl. Phys. 68, 2255 (1990).Google Scholar
13. Hishikawa, Y. et al., Jpn. J. Appl. Phys. 24, 385 (1985).CrossRefGoogle Scholar
14. Stutzmann, M., Phil. Mag. B 60, 531 (1989).Google Scholar
15. Manan, A. H. et al., in Amorphous Silicon Technology, edited by Madan, A. et al., Mat. Res. Soc. Symp. Proc. 149, 539 (1989).Google Scholar
16. Wang, F. and Schwarz, R., J. Appl. Phys. 71, 791 (1992).Google Scholar
17. Tang, X. M., Weber, J., Baer, Y., and Finger, F., Phys. Rev. B 41, 7945 (1990).Google Scholar
18. Winer, K., Phys. Rev. B 41, 12150 (1990).CrossRefGoogle Scholar
19. Maley, N. and Lannin, J. S., Phys. Rev. B 36, 1146 (1987).Google Scholar
20. Balberg, I. and Lubianiker, Y., Phys. Rev. B 48, 8709 (1993).CrossRefGoogle Scholar
21. Li, Y.-M., Fieselmann, B. F., and Catalano, A., Proc. of the XXII IEEE Photovoltaic Spec. Conf. (IEEE, NY, 1991), p. 1231.Google Scholar
22. Albers, M. L., Shinar, J., and Shanks, H. R., J. Appl. Phys. 64, 1859 (1988);Google Scholar
Mitra, S., Gleason, K. K., Jia, H., and Shinar, J., Phys. Rev. B 48, 2175 (1993).Google Scholar
23. For a review of this technique, see Balberg, I. in ref. 1, p. 693.Google Scholar
24. Balberg, I. and Weisz, S. Z., Appl. Phys. Lett. 59, 1726 (1991).Google Scholar
25. Balberg, I. and Weisz, S. Z., J. Appl. Phys. 70, 2204 (1991).Google Scholar
26. Rose, A., Concepts in Photoconductivity and Allied Problems (Wiley Interscience, NY, 1963).Google Scholar
27. Mendoza, D. and Pickin, W., Phys. Rev. B 40, 3913 (1989).Google Scholar
28. Souvain, E., Hubin, J., Shah, A., and Pipoz, P., Phil. Mag. Lett. 63, 327 (1991).Google Scholar