Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T04:07:41.325Z Has data issue: false hasContentIssue false

Millisecond Duration Annealing of Boron Implants in Silicon

Published online by Cambridge University Press:  26 February 2011

D. A. Smith
Affiliation:
Microelectronics Research Laboratory, Department of Physics, University of Cambridge CB4 4FW, U.K.
R. A. McMahon
Affiliation:
Microelectronics Research Laboratory, Department of Physics, University of Cambridge CB4 4FW, U.K.
H. Ahmed
Affiliation:
Microelectronics Research Laboratory, Department of Physics, University of Cambridge CB4 4FW, U.K.
D. J. Godfrey
Affiliation:
G.E.C. Research Limited, Hirst Research Centre, East Lane, Wembley, Middlesex, HA9 7PP, sU.K.
Get access

Abstract

A dual electron beam machine has been used to anneal boron implanted layers in order to study the diffusion and activation behaviour over a wide range of doses. The annealed implants have been characterized by spreading resistance profiling and secondary ion mass spectroscopy (SIMS). Carrier concentration profiles show that millisecond duration anneals can activate boron implants. A boron dose of 1E16 ions/cm2 was annealed to give a sheet resistance of 30 Ωsq with 40% of the implant activated. The SIMS technique showed there were no significant differences between the atomic profiles of the as-implanted samples and specimens subjected to a millisecond anneal or to a low temperature 850°C rapid isothermal anneal for 10s.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) Sedgwick, T.O., J.Electrochem.Soc 130,p.484 (1983)Google Scholar
(2) McMahon, R.A. and Ahmed, H., “Electron beam annealing of ion implanted silicon,” Electron. Lett., vol.15, pp 4547,1979 CrossRefGoogle Scholar
(3) Hill, C., Mat. Res. Soc. Symp. Proc. 1, 361, 1981, (North Holland,New York).Google Scholar
(4) McMahon, R.A., Hasko, D.G., Ahmed, H., Stobbs, W.M. and Godfrey, D.J., Mat. Res. Soc. Symp. Proc. 35,347, 1985, (North Holland, New York).Google Scholar
(5) Yu, T., Soda, K.J., Streetman, B.C., J. Appl. Phys. 51,p.4399 (1980)Google Scholar
(6) Seidel, T.E. and MacRae, A.U., Proc. 1st Int. Conf. on Implantation in Semiconductors, Thousand Oaks, CA (Gordon and Breach, New York, 1970)Google Scholar
(7) Sedgwick, T.O., Proc.Electrochem. Soc. 82(7),130 (1982)Google Scholar
(8) Hodgson, R.T., Deline, V.R., Mader, S. and Gelpey, J.C. Appl. Phys.Lett. 44(6), p.489,15 March 1984 CrossRefGoogle Scholar
(9) Cspregi, L., Kennedy, E.F., Gallagher, T.J., Mayer, J.W. and Sigmon, T.W., J.Appl.Phys., 48,p.4234,(1977)CrossRefGoogle Scholar
(10) Tsein, P.H., Gotzlich, J., Ryssel, H. and Ruge, I., J.Appl. Phys, Vol.53(1), p.663,1982 Google Scholar
(11) Fan, D., Huang, J., Jaccodine, R.J., Kahora, P. and Stevie, F., Appl.Phys.Lett. 50(24),p. 1745,1987 CrossRefGoogle Scholar
(12) Michel, A.E., Rausch, W., Ronsheim, P.A. and Kastl, R.H. Appl.Phys.Lett. 50(7),p.416,1987 Google Scholar
(13) Michel, A.E., Rausch, W. and Ronsheim, P.A., Appl.Phys Lett. 51(7),17 August 1987 Google Scholar
(14) Morehead, F.F. and Lever, R.F. Appl.Phys.Lett 48(2),p.151,1986 Google Scholar
(15) Cho, K.,Numan, M.,Finstad, T.G., Chu, W.K., Liu, J. and Wortman, J.J., Appl.Phys.Lett. 47(12),p.1321,1985 Google Scholar
(16) Godfrey, D.J., Groves, R.D., Dowsett, M.G. and Willoughby, A.F.W., Physica B, Vol.129,p181,1985 Google Scholar