Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-14T12:47:35.068Z Has data issue: false hasContentIssue false

Microstructure of Carbon Encapsulated Superparamagnetic Co Nanoparticles

Published online by Cambridge University Press:  17 March 2011

Xiang-Cheng Sun
Affiliation:
Prog. Molecular Engineer, Instituto Mexicano del Petroleo (IMP), Lazaro Cardenas 152, 07730, D. F. Mexico
J. Reyes-Gasga
Affiliation:
Institute of Physics, National University of Mexico, D.F. Mexico
X. L. Dong
Affiliation:
Shenyang Polytechnic University, Shenyang, P. R., China
Get access

Abstract

Carbon encapsulated magnetic Co nanoparticles have been synthesized by modified arc-discharge method. Both high-resolution transmission electron microscopy (HREM) and powder x-ray diffraction (XRD) profiles reveal the presence of 8-15nm diameter crystallites coated with 1-3 carbon layers. Specially, HREM images indicate that the intimate and contiguous carbon fringe around those Co nanoparticles is good evidence for complete encapsulation by carbon shell layers. The encapsulated phases are identified as hcp (α)-Co, fcc (β)-Co and cobalt carbide (Co3C) nanocrystals by using x-ray diffraction, electron diffraction and energy dispersive x-ray analysis. However, some fcc (β)-Co particles with a significant fraction of stacking faults are observed by HREM and confirmed by means of numerical Fourier transform (FFT) of HREM lattice images. In particular, the carbon encapsulation formation and growth mechanism are also reviewed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kratschmer, W., Lamb, L.D., Fostiropoules, K., and Huffman, D.R., Nature 347, 354 (1990).Google Scholar
2. Ugarte, D., Chem. Phys. Lett. 198, 596 (1992).Google Scholar
3. Ugarte, D., Nature 359, 707 (1992).Google Scholar
4. Iijima, S., Nature 354, 56 (1991).Google Scholar
5. Ruoff, R.S., Lorentes, D.C., Chan, B., Malhotra, R., and Subramoney, S., Science 259, 346 (1993).Google Scholar
6. Saito, Y., Yoshikawa, T., Okuda, M., Ohkohchi, M., Ando, Y., Kasuya, A., and Nishina, Y., Chem. Phys. Lett. 209, 72 (1993).Google Scholar
7. Seraphin, S., J. Electrochem. Soc. 142, 290 (1995).Google Scholar
8. Dravid, V.P., Host, J.J., Teng, M.H., Elliott, B., Hwang, J., Johnson, D.L., Mason, T.O., and Weertman, J.R., Nature 374, 602 (1995).Google Scholar
9. McHenry, M.E., Majetich, S.A., Artman, J.O., DeGraef, M., and Staley, S.W., Phys. Rev. B49, 11358 (1994).Google Scholar
10. Kopelev, N.S., Vladimir, C., Nath, A., Wang, Z.L., Kuzmann, E., Zhang, B., and Via, G.H., Chem. Mater. 7, 1419 (1995).Google Scholar
11. Dong, X.L., Zhang, Z.D., Xiao, Q.F., Zhao, X.G., Chuing, Y.C., Jin, S.R., Sun, W.M., Lin, Z.J., Zhang, Z.X., and Yang, H., J. Mater. Sci. 33, 1915 (1998).Google Scholar
12. Sun, Xiangcheng, Gutierrez, A., Yacaman, M. J., Dong, X. L. and Jin, S.R., Mater. Sci. Eng. A286, 157 (2000).Google Scholar
13. Sun, Xiangcheng, Dong, X.L., J. Nanosci. Nanotech. 1, 291 (2001).Google Scholar
14. Sun, Xiangcheng, Dong, X.L., and Toledo, J. A., (unpublished).Google Scholar
15. Ericsson, T., Acta. Metall. 14, 853 (1966).Google Scholar
16. Saito, Y., Yoshikawa, T., Okuda, M., Fujimoto, N., Suzuki, K., Kasuya, A., and Nishina, Y., J. Phys. Chem. Solids 54 (12), 1849 (1993).Google Scholar