Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-18T17:00:28.207Z Has data issue: false hasContentIssue false

Microstructural Identification of SiNx Films by Real-Time Ellipsometry

Published online by Cambridge University Press:  10 February 2011

G. Soto
Affiliation:
Instituto de Física, UNAM., Laboratorio de Ensenada, A. Postal 2681, 22800 Ensenada B.C., México.
E. C. Samano
Affiliation:
Also at Centro de Investigación Científica y de Educación Superior de Ensenada, Programa de Posgrado en Física de Materiales, A. Postal 2681, 22800 Ensenada B.C., México.
R. Machorro
Affiliation:
Also at Centro de Investigación Científica y de Educación Superior de Ensenada, Programa de Posgrado en Física de Materiales, A. Postal 2681, 22800 Ensenada B.C., México.
M. Avalos
Affiliation:
Also at Centro de Investigación Científica y de Educación Superior de Ensenada, Programa de Posgrado en Física de Materiales, A. Postal 2681, 22800 Ensenada B.C., México.
L. Cota
Affiliation:
Also at Centro de Investigación Científica y de Educación Superior de Ensenada, Programa de Posgrado en Física de Materiales, A. Postal 2681, 22800 Ensenada B.C., México.
Get access

Abstract

Real-time ellipsometry has shown to be a powerful tool to analyze thin films during processing. It is non-disturbing and its sensitivity lies in the submonolayer range. In fact, a slight variation in the film microstructure might result in a significant change of the polarization state of the reflected beam from the sample surface. SiNx layers have been grown on glass, quartz, KC1 and Si substrates by laser ablating a Si3N4 sintered target in vacuum and N2 environment. The film growth was monitored by real time ellipsometry at a fixed wavelength, and a fixed incidence angle. Once the deposition process is completed, the refractive index was obtained by perfoming in situ spectroellipsometric measurements in the 1.5 to 5 eV photon-energy range. The best curve fitting of the experimental data is used to find the film composition: a mixture of Si3N4, polycrystalline Si, and amorphous Si. The films composition and micro structure inferred from ellipsometric data are compared to those obtained by in-situ surface techniques and TEM, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Deshpande, S. V., Gulari, E., Brown, S. W., and Rand, S. C., J. Appl. Phys. 77, p. 6534 (1995).Google Scholar
2. Fogarassy, E., Fuchs, C., Slaoui, A., Unamuno, S., Stoquert, J. P., Marine, W., and Lang, B., J. Appl. Phys. 76, p. 2612(1994).Google Scholar
3. Azzam, R.M., and Bashara, N.M., Ellipsometry and Polarized Light (North Holland, Amsterdam, 1992).Google Scholar
4. Palik, E.D., Handbook of Optical Constants of Solids (Academic Press, Orlando, FL, 1985).Google Scholar
5. Aspnes, D. E., Thin Solid films, 89, p. 249 (1982).Google Scholar
6. De Giorgi, M. L., Leggieri, G., Luches, A., Martino, M., Perrone, A., Majni, G., Mengucci, P., Zemek, J., Mihailescu, I. N., Appl. Phys. A 60, p. 275 (1995).Google Scholar
7. Claassen, W. A. P., Valkenburg, W. G. J. N., Habraken, F. H. P. M. and Tamminga, Y., J. Electrochem. Soc. 130, p. 2419 (1983).Google Scholar
8. Yuehui, Y., Xianghuai, L., Ziwei, F. and Shichang, Z., Appl. Surf. Sci. 40, p. 145 (1989).Google Scholar