Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-24T02:22:41.547Z Has data issue: false hasContentIssue false

Microstructural Changes to Xenon Naonoclusters in Aluminum under 1 MeV Electron Irradiation.

Published online by Cambridge University Press:  21 March 2011

S. E. Donnelly
Affiliation:
Joule Physics Laboratory, University of Salford M5 4WT, UK
R. C. Birtcher
Affiliation:
Materials Science Division, Argonne National Laboratory, IL 60439, USA
C. W. Allen
Affiliation:
Materials Science Division, Argonne National Laboratory, IL 60439, USA
K. Furuya
Affiliation:
National Research Institute for Metals, Sakura, Tsukuba 305, Japan
M. Song
Affiliation:
National Research Institute for Metals, Sakura, Tsukuba 305, Japan
K. Mitsuishi
Affiliation:
National Research Institute for Metals, Sakura, Tsukuba 305, Japan
Get access

Abstract

Aluminum films containing solid Xe precipitates have been subjected to 1 MeV electron irradiation in a high-voltage electron microscope. High-resolution images have been recorded on videotape in order to monitor the changes to the system resulting from the passage of electrons through the film. Inspection of the video recordings reveals that complex, rapid processes occur under the electron beam. These include shape changes, the creation and movement of extended defects within the Xe lattice, movement of small clusters, coalescence of neighboring clusters and the apparent melting and resolidification of the Xe. An interpretation of many of the observations is presented in terms of the interaction of the nanoclusters with defects created in the aluminum by the high-energy electrons.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Donnelly, S. E., Rad. Effects, 90, 147, (1985) and references therein.Google Scholar
2. Greenwood, G.W., Foreman, A.J.E., Rimmer, D.E., J. Nucl. Mat., 1959, 4, 305 Google Scholar
3. Trinkaus, H., Rad. Effects, 1983, 78, 189 Google Scholar
4. Templier, C., Jaouen, C., Rivière, J.P., Delafond, J. and Grillhé, J., C.R. Acad. Sci. Paris, 299, 613, (1984).Google Scholar
5. Felde, A. Vom, Fink, J., Heinzerling, Th. Müller, Pflüger, J., Scheerer, B., Linker, G. and Kaletta, D., Phys. Rev. Letters, 53, 922, (1984).Google Scholar
6. Evans, J.H. and Mazey, D.J., J. Nucl. Mat., 138, 176, (1986).Google Scholar
7. Templier, C., Garem, H. and Rivière, J.P., Phil. Mag., 53, 667, (1986).Google Scholar
8. Templier, C., Garem, H. and Rivière, J.P. and Delafond, J., Nucl. Instr. and Meth., 18, 24, (1986).Google Scholar
9. Furuya, K., Ishikawa, N. and Allen, C.W., J. Microsc. 194, 152 (1999).Google Scholar
10. Doyama, M and Koehler, J. S., Phys. Rev. 134, A522 (1964).Google Scholar
11. Herschbach, K., Phys. Rev. 130, 2238 (1963 Google Scholar
12. Ronchi, C., J. Nucl. Mat., 1981 96, 314.Google Scholar
13. Birtcher, R. C., Donnelly, S. E., Song, M., Furuya, K., Mitsuishi, K and Allen, C. W.. Phys. Rev. Letters 83(8) 1617 (1999).Google Scholar