Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T16:31:42.753Z Has data issue: false hasContentIssue false

Microstructural and Optical Characterization of GaN Films Grown by PECVD on (0001) Sapphire Substrates

Published online by Cambridge University Press:  26 February 2011

T. P. Humphreys
Affiliation:
Department of Physics, North Carolina State University, Raleigh, NC 27695-8202
C. A. Sukow
Affiliation:
Department of Physics, North Carolina State University, Raleigh, NC 27695-8202
R. J. Nemanich
Affiliation:
Department of Physics, North Carolina State University, Raleigh, NC 27695-8202
J. B. Posthill
Affiliation:
Research Triangle Institute, Research Triangle Park, NC 27709-2194
R. A. Rudder
Affiliation:
Research Triangle Institute, Research Triangle Park, NC 27709-2194
S. V. Hattangady
Affiliation:
Research Triangle Institute, Research Triangle Park, NC 27709-2194
R. J. Markunas
Affiliation:
Research Triangle Institute, Research Triangle Park, NC 27709-2194
Get access

Abstract

Epitaxial GaN films have been grown by plasma-enhanced chemical vapor deposition (PECVD). The growth procedure utilizes a He gas discharge combined with the down-stream introduction of trimethylgallium (TMGa) and nitrogen. Both cubic [1111 and wurtzitic [0001] GaN epitaxial films have been achieved on (0001) sapphire substrates. Differences in substrate growth temperatures are believed to account for the different observed phases. A comparative study pertaining to the microstructural, optical and electrical properties of the α-GaN and β-GaN heteroepitaxial films is presented. Also reported for the first time is the Raman spectroscopy data for cubic GaN.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Das, K. and Ferry, D.K., Solid State Electron., 19. 851 (1976).Google Scholar
2. Maruska, H. P. and Tietjen, J.J., Appl. Phys. Lett., 15, 327 (1969).Google Scholar
3. Pankove, J. I., Phys. Rev. Lett., 34, 809 (1975).Google Scholar
4. Madar, R., Jacob, G., Hallis, J. and Fruchart, R., J. Cryst. Growth., 31, 197 (1975).Google Scholar
5. Khan, M. A., Skogman, R.A., Schulze, R.G. and Gershenzon, M., Appl. Phys. Lett., 42, 430 (1986).Google Scholar
6. Sasaki, T. and Zembutsu, S., J. Appl. Phys., 61, 2533 (1987).Google Scholar
7. Gotoh, H., Suga, T., Suzuki, H. and Kimata, M., Jpn. J. Appl. Phys., 20, L545 (1981).Google Scholar
8. Paisley, M. J., Sitar, Z., Posthill, J.B. and Davis, R.F., J. Vac. Sci. Tech., 7, 701 (1989).Google Scholar
9. Pankove, J., Bloom, S. and Harbeke, G., RCA Rev., 36, 163 (1975).Google Scholar
10. Tempel, A., Seifert, W., Walter, U., Nagel, C., Neels, K.H., Izv. Khim. Bulg. Akad. Nank. 11, 370 (1978).Google Scholar
11. Kern, W. and Puotinen, D.A., RCA Rev., 31, 187 (1970).Google Scholar
12. Hattangady, S.V., Fountain, G.G., Rudder, R.A. and Markunas, R.J., J. Vac. Sci. Technol., 7, 570 (1989).Google Scholar
13. Film depositions were carried out at the Research Triangle Institute.Google Scholar
14. X-ray Power Diffraction File, JCPDS, Card No. 2–1078.Google Scholar
15. Summerville, M.K. and Posthill, J.B., J. Electron Microsc Tech., 12. 56 (1989).Google Scholar
16. Humphreys, T. P., Miner, C.J., Posthill, J.B., Das, K., Summerville, M.K., Nemanich, R.J., Sukow, C.A. and Parikh, N.R., Appl. Phys. Lett., 54. 1687 (1989).Google Scholar
17. Manchom, D. D., Barker, A. S., Dean, P. J. and Zetterstrom., R. B. Solid State Commun. 8, 1227 (1970).Google Scholar