Skip to main content Accessibility help
×
Home

Microstructural and Mechanical Characterization of a TRIP-800 Steel Welded By Laser-CO2 Process

  • G. Y. Perez-Medina (a1), P. Zambrano (a2), H. F. López (a1), F. A. Reyes-Valdés (a1) and V. H. López-Cortés (a1)...

Abstract

This paper presents results on the impact of Laser CO2 process variables on the weldability, phase transformations and tensile properties of a TRIP800 Steel. The microstructure of this steel is comprised of ferrite, bainite and retained austenite phases. This is obtained by controlled cooling from the intercritical annealing temperature to the isothermal bainitic holding temperature. These steels have been increasingly used in the last 10 years in the automotive industry and for these materials to be used effectively; the influence of material and the CO2 laser welding process condition must be clearly understood. Hence, in this work the effect of the welding process on the resultant microstructures and on the exhibited mechanical properties is investigated. It is found that the tensile strength of welded specimens falls below 800 MPa and that the elongation becomes 15 % or lower. In turn, this clearly indicates that the implemented laser welding process leads to a reduction in the TRIP800 steel toughness.

Copyright

References

Hide All
1. BY Kapustka, N.. Conrardy, C.. Effect of GMAW process and Material Conditions on DP 780 and TRIP 780 Welds, Welding Journal 2008.
2. Choi, I.D. et al. (2002), Deformation behaviour of low carbon TRIP sheet steels at high strain rates. ISIJ Int 2002; 42(12):1483–9
3. Gould, J. E., Lehman, L. R., Holmes, S., (1996). A design of experiments evaluation of factors affecting the RSW of high-strength steels. Proc. Sheet Metal Welding Conference VII, AWS
4. Gould, J. E., Workman, D., (1998), Fracture morphologies of RSW exhibiting hold time sensitivity behavior. Proc. Sheet Metal Welding Conference VIII, AWS Detroit S.
5. Li, M. V; Niebuhr, 1998. A computational model for the prediction of steel hardenability. Metallurgical and Materials Transactions 29B (6):661.
6. Bhadeshia, H. K. D. H; and Svensson, L-E 1993. Mathematical Modeling of Weld Phenomena, eds, H., Cerjack and Easterling, K. E., Institute of Metals, London, pp.109180.
7. Gould, J.E., Khurana, S.P., Li, T.; (2006), Predictions of microstructures when welding automotive AHSS; Welding Journal, AWS, May 2006, 111.
8. De Meyer, M., D. B.C.D. Cooman 41st MWSP Conference Proceedings, ISS, 1999, pp.483.
9. Perez-Medina, G.Y., Reyes-Valdés, F.A., Lopez, H. F., Structural Integrity of a Welded TRIP800 Steel Using Laser CO2 and GMAW Processes; Rivista Italiana della Saldatura N-3 2010, pp. 333338.

Keywords

Related content

Powered by UNSILO

Microstructural and Mechanical Characterization of a TRIP-800 Steel Welded By Laser-CO2 Process

  • G. Y. Perez-Medina (a1), P. Zambrano (a2), H. F. López (a1), F. A. Reyes-Valdés (a1) and V. H. López-Cortés (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.