Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-07-01T21:51:34.233Z Has data issue: false hasContentIssue false

Microstructural and Electrical Characterization of Barium Strontium Titanatebased Solid Solution Thin Films Deposited on Ceramic Substrates by Pulsed Laser Deposition

Published online by Cambridge University Press:  01 February 2011

Costas G. Fountzoulas
Affiliation:
Weapons Materials Research Directorate, Army Research Laboratory, Aberdeen Proving Ground, MD 21005-5069, U.S.A.
Daniel M. Potrepka
Affiliation:
Sensors and Electron devices Directorate, Army Research Laboratory, Adelphi, MD 20783-1197, U.S.A.
Steven C. Tidrow
Affiliation:
Sensors and Electron devices Directorate, Army Research Laboratory, Adelphi, MD 20783-1197, U.S.A.
Get access

Abstract

Ferroelectrics are multicomponent materials with a wealth of interesting and useful properties, such as piezoelectricity. The dielectric constant of the BSTO ferroelectrics can be changed by applying an electric field. Variable dielectric constant results in a change in phase velocity in the device allowing it to be tuned in real time for a particular application. The microstructure of the film influences the electronic properties which in turn influences the performance of the film. Ba0.6Sr0.4Ti1-y(A 3+, B5+)yO3 thin films, of nominal thickness of 0.65 μm, were synthesized initially at substrate temperatures of 400°C, and subsequently annealed to 750°C, on LaAlO3 (100) substrates, previously coated with LaSrCoO conductive buffer layer, using the pulsed laser deposition technique. The microstructural and physical characteristics of the postannealed thin films have been studied using x-ray diffraction, scanning electron microscopy, and nano indentation and are reported. Results of capacitance measurements are used to obtain dielectric constant and tunability in the paraelectric (T>Tc) regime.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Potrepka, D. M.,Tidrow, S. C., andTauber, A., Mat. Res. Soc. Symp. Proc., 656E, (2001).Google Scholar
2. Findikoglu, A. T.,Jia, Q. X.,Reagor, D. W., andWu, X. D., Microwave Opt. Technol. Lett., 9, 306 (1995).Google Scholar
3. Gim, Y.,Hudson, T.,Fan, Y.,Kwon, C.,Fidikoglu, A. T.,Gibbons, B. J.,Park, B. H., andJia, Q. X., Appl. Phys. Lett., 77 (8), pp. 12001202 (2000).Google Scholar
4. Herner, S. B.,Selmi, F. A.,Varadan, V. V. andVaradan, V. K., Mat. Lett., 15, pp. 317324 (1993).Google Scholar
5. Chan, N. H.,Sharma, R. K. andSmyth, D. M., J. Am. Ceram. Soc., 65, 165 (1982).Google Scholar
6. Lee, J.,Ramesh, R. andKeramidas, V. G., Mat. Res. Soc. Proc, 361, 67 (1995).Google Scholar
7. Preston, K. D. andHarting, G. H., Appl. Phys. Lett. 60 (23), 2831 (1992).Google Scholar
8. Baumert, B. A.,Chang, L. H.,Matsuda, A. T.,Tsai, T. L.,Tracy, C. J.,Taylor, D. J.,Otsuki, T., Fujii, E,Hayashi, a. andSuu, K., J. Appl. Phys., 82, (5), pp. 35583565 (1997).Google Scholar
9. Pharr, G. M., andOliver, W. C., MRS Bulletin 17, 28 (1992).Google Scholar