Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-17T11:18:25.809Z Has data issue: false hasContentIssue false

Microscopic Noncontact Electrical Evaluation for the Silicon-on-Insulator Layer with Voids

Published online by Cambridge University Press:  21 February 2011

A. Usami
Affiliation:
Nagoya Institute of Technology, Nagoya 466, Japan
T. Nakai
Affiliation:
Nagoya Institute of Technology, Nagoya 466, Japan
S. Ishigami
Affiliation:
Mitsubishi Materials Co., Ltd., Omiya 330, Japan
T. Wada
Affiliation:
Nagoya Institute of Technology, Nagoya 466, Japan
K. Matsuki
Affiliation:
Dainippon Screen Mfg. Co., Ltd., Kyoto 612, Japan
T. Takeuchi
Affiliation:
Dainippon Screen Mfg. Co., Ltd., Kyoto 612, Japan
Get access

Abstract

We evaluate the electrical properties of the silicon-on-insulator (SOI) layer made by the wafer bonding using a noncontact laser beam induced conductivity/current (LBIC) method. Since the thickness of the SOl layer used in this study is about 40μm, the He-Ne laser, whose penetration depth for Si is small (about 3μm), is used as the carrier-injection light source.

We use the SOI wafer with some voids which are revealed by the X-ray topography. We have reported that the LBIC signal intensity decreases in the void region. In this study, we measure the microscopic signal variation near the edge of the void. It is observed that the LBIC signal intensity decreases in the outside region within a distance of about 700μm from the void edge. The diffusion length of the injected carrier (100-150μm) is shorter than the width of the region where the signal intensity decreases. Thus the decrease is not due to the carrier diffusion to the void. These results show that the formation of the void degrades the electrical properties not only in the void region but also outside the void.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Lasky, J.B., Appl.Phys.Lett., 48 78 (1986).Google Scholar
[2] Maszara, W.P., J.Electrochem.Soc., 138 341 (1991).Google Scholar
[3] Maszara, W.P., Goetz, G., Caviglia, A. and McKitterick, J.B., J.Appl.Phys. 64 4943 (1988).Google Scholar
[4] Abe, T., Takei, T., Uchiyama, A., Yoshizawa, K. and Nakazato, Y., Jpn.J.Appl.Phys., 29 L2311 (1990).Google Scholar
[5] Maby, E.W., Geis, M.W., LeCoz, Y.L., Silversmith, D.J., Mountain, R.W. and Antoniadis, D.A., IEEE Electron Device Lett., EDL–2, 241 (1981).Google Scholar
[6] Izumi, K., Doken, M. and Ariyoshi, H., Electron.Lett. 14 593 (1978).Google Scholar
[7] Mitani, K., Lehmann, V., Stengl, R., Feijoo, D., Gosele, U.M. and Massoud, H.Z., Jpn.J.Appl.Phys., 30 615 (1991).Google Scholar
[8] Usami, A., Proc.IEEE Int. Conference on Microelectronic Test Structures, 4 No.1 p.1 (1991).Google Scholar
[9] Usami, A., Fujiwara, H., Yamada, N., Matsuki, K., Takeuchi, T. and Wada, T., IEICE Trans. Electron., E75–C 595 (1992).Google Scholar
[10] Usami, A., Nakai, T., Fujiwara, H., Ishigami, S. and Wada, T., IEICE Trans. Electron., E75–C 1043 (1992).Google Scholar
[11] Usami, A., Yamada, N., Matsuki, K., Takeuchi, T. and Wada, T., Mat.Res.Soc.Symp.Proc., 146 359 (1989).CrossRefGoogle Scholar
[12] Richter, H., Wang, Z.P. and Ley, L., Solid State Communications, 39 625 (1981)Google Scholar