Skip to main content Accessibility help
×
Home

Micro-Raman Mapping and Analysis of Indentation-Induced Phase Transformations in Germanium

  • Jae-il Jang (a1), M. J. Lance (a2), Songqing Wen (a1), J. J. Huening (a3), R. J. Nemanich (a3) and G. M. Pharr (a1) (a2)...

Abstract

Although it has been confirmed by diamond anvil cell experiments that germanium transforms under hydrostatic pressure from the normal diamond cubic phase (Ge-I) to the metallic β-tin phase (Ge-II) and re-transforms to Ge-III (ST12 structure) or Ge-IV (BC8 structure) during release of the pressure, there are still controversies about whether the same transformations occur during nanoindentation. Here, we present new evidence of indentation-induced phase transformations in germanium. Nanoindentation experiments were performed on a (100) Ge single crystal using two triangular pyramidal indenters with different tip angles - the common Berkovich and the sharper cube-corner. Although the indentation load-displacement curves do not show any of the characteristics of phase transformation that are well-known for silicon, micro-Raman spectroscopy in conjunction with scanning electron microscopy reveals that phase transformations to amorphous and metastable crystalline phases do indeed occur. However, the transformations are observed reproducibly only for the cube-corner indenter.

Copyright

References

Hide All
1. Domnich, V. and Gogotsi, Y., in Handbook of Surfaces and Interfaces of Materials Vol. 2, edited by Halwa, H. S. (Academic Press, New York, 2001), p. 355.
2. Mujica, A., Rubio, A., Munoz, A., and Needs, R.J., Rev. Modern Phys. 75, 863 (2003).
3. Gridneva, I. V., Milman, Y. V., and Trefilov, V. I., phys. Stat. sol. (a) 14, 177 (1972).
4. Shinomura, O., Minomura, S., Sakai, N., and Asaumi, K., Phil. Mag. 29, 549 (1974).
5. Clarke, D. R., Kroll, M. C., Kirchner, P. D., and Cook, R. F., Phys. Rev. Lett. 60, 2156 (1988).
6. Kailer, A., Nickel, K.G., and Gogotsi, Y.G., J. Raman. Spcetrosc. 30, 939 (1999).
7. Bradby, J.E., Williams, J.S., Wong-Leung, J., Swain, M.V., and Munroe, P., Appl. Phys. Lett. 80, 2651 (2002).
8. Patriarche, G., Le Bourhis, E., Khayyat, M.M.O., and Chaudhri, M.M., J. Appl. Phys. 96, 1464 (2004).
9. Jang, J.-I., Lance, M.J., Wen, S., Tsui, T.Y., and Pharr, G.M., Acta Mater. (in press).
10. Pharr, G.M., Oliver, W.C., and Harding, D.S., J. Mater. Res. 6, 1129 (1991).
11. Hainsworth, S.V., Whithead, A.J., and Page, T.F., in Plastic Deformation of Ceramics, edited by Bradt, R. C., Brookes, C. A., and Routbort, J. L. (Plenum, New York, 1995), p. 173.
12. Hanfland, M. and Syassen, K., High Pressure Res. 3, 242 (1990).
13. Nelmes, R.J., McMahon, M.I., Wright, N.G., Allan, D.R., and Loveday, J.S., Phys. Rev. B 48, 9883 (1993).
14. Gogotsi, Y.G., Domnich, V., Dub, S.N., Kailer, A., and Nickel, K.G., J. Mater. Res. 15, 871 (2000).

Micro-Raman Mapping and Analysis of Indentation-Induced Phase Transformations in Germanium

  • Jae-il Jang (a1), M. J. Lance (a2), Songqing Wen (a1), J. J. Huening (a3), R. J. Nemanich (a3) and G. M. Pharr (a1) (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed