Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-20T15:05:19.814Z Has data issue: false hasContentIssue false

Micromorphology, Microstructure and Magnetic Properties of Sputtered Garnet Multilayers

Published online by Cambridge University Press:  10 February 2011

R. Marcelli
Affiliation:
Istituto di Elettronica dello Stato Solido del CNR, via Cineto Romano 42, 00156 Roma, Italy
G. Padeletti
Affiliation:
Istituto di Chimica dei Materiali del CNR, via Salaria km. 29.5, 00016 Monterotondo Stazione (RM), Italy
N. Gambacorti
Affiliation:
Istituto di Chimica dei Materiali del CNR, via Salaria km. 29.5, 00016 Monterotondo Stazione (RM), Italy
M. G. Simeone
Affiliation:
Istituto di Chimica dei Materiali del CNR, via Salaria km. 29.5, 00016 Monterotondo Stazione (RM), Italy
D. Fiorani
Affiliation:
Istituto di Chimica dei Materiali del CNR, via Salaria km. 29.5, 00016 Monterotondo Stazione (RM), Italy
Get access

Abstract

The growth technique, the micromorphological and microstructural characterization by means of atomic force microscopy (AFM) and secondary ions mass spectrometry (SIMS) as well as the magnetic properties of a novel class of magnetic multilayers, based on radio frequency (RF) sputtered thin amorphous garnet films, are presented. One, three and five thin film multilayers composed by amorphous pure yttrium iron garnet (a:YIG) and amorphous gadolinium gallium garnet (a:GGG) have been grown on GGG single crystal substrates. The multilayer interfaces have been found to be comparable in both, the three and five-layers structure. Low field susceptibility measurements, showed a paramagnetic behaviour for the single layer YIG film. For the three and five layers samples, irreversibility effects were observed, giving evidence of magnetic clusters at the interface YIG/GGG.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Magnetic Thin Films Multilayers and Superlattices, Fert, A., Guntherodt, G., Heinrich, B., Marinero, E.E., Maurer, M. Editors, E-Mat. Res. Soc. Proc. 16, Amsterdam, 1991.Google Scholar
Magnetic Multilayers. Bennett, L.H. and Watson, R.E. Editors, World Scientific, London, 1994.Google Scholar
2. Winkler, G., Magnetic Garnets. F. Vieweg & Sohn, Braunschweig/Wiesbaden, 1981 Google Scholar
3. Circuits, Systems and Signal Processing, special Issue on Magnetostatic Waves and Applications to Signal Processing, 4, (1985).Google Scholar
4. Stancil, D.D., IEEE J. Quantum Electronics, 27, 61, (1991).Google Scholar
5. De Gasperis, P. and Marcelli, R., Mat. Res. Bull. 22, 235, (1987).Google Scholar
6. Sun, Kunquam, Vittoria, C., Glass, H.I., De Gasperis, P., Marcelli, R., J. Appl. Phys. 67, 3088, (1990).Google Scholar
7. Wigen, P.E., Zhang, Z., Zhou, L. and Ye, M., J. Appl. Phys. 73(10), 6338, (1993).Google Scholar
8. Goernert, P. and Sinn, E., in Crystal Growth of Electronics Materials, edited by Kaldis, E., Elsevier Science, Amsterdam (1985), p. 81101.Google Scholar
9. Hirano, T., Namikawa, T. and Yamazaki, Y., IEEE Trans, on Magnetics 28, 3237, (1992).Google Scholar
10. Chukalkin, Yu. G., Shtirz, V.R. and Goshchitskii, B.N., Phys. Stat. Sol. A 112, 161, (1989).Google Scholar
11. Krumme, J.-P., Doormann, V. and Eckart, R., IEEE Trans, on Magnetics 20, 983, (1984).Google Scholar
12. Chukalkin, Yu. G. and shirts, V.R., Sov. Phys. Sol. State 31(7), 1215, (1989).Google Scholar
13. Shirts, V.R., Chukalkin, Yu. G., Petrov, V.V. and Goshitskii, B.N., Sov. Phys. Solid State 29(3), 509, (1987).Google Scholar