Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-11T22:36:50.471Z Has data issue: false hasContentIssue false

Micrometer-scale machining of metals and polymers enabled by focused ion beam sputtering

Published online by Cambridge University Press:  10 February 2011

D. P. Adams
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185, dpadams@sandia.gov
G. L. Benavides
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185, dpadams@sandia.gov
M. J. vasile
Affiliation:
Louisiana Tech University, Ruston, LA 71272
Get access

Abstract

This work combines focused ion beam sputtering and ultra-precision machining for microfabrication of metal alloys and polymers. Specifically, micro-end mills are made by Ga ion beam sputtering of a cylindrical tool shank. Using an ion energy of 20keV, the focused beam defines the tool cutting edges that have submicrometer radii of curvature. We demonstrate 25μm diameter micromilling tools having 2, 4 and 5 cutting edges. These tools fabricate fine channels, 26–28 microns wide, in 6061 aluminum, brass, and polymethyl methacrylate. Micro-tools are structurally robust and operate for more than 5 hours without fracture.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Orloff, J., Rev. Sci. Instrum. 64, 1105 (1993).Google Scholar
[2] Kirk, E.C.G., McMahon, R.A., Cleaver, J.R.A. and Ahmed, H., J. Vac. Sci. Technol. B 6, 1940 (1988).Google Scholar
[3] Albrecht, T. and Quate, C.F., J. Appl. Phys. 62, 2599 (1987).Google Scholar
[4] Vasile, M.J., Biddick, C.J. and Huggins, H., Appl. Phys. Lett. 64, 575 (1994).Google Scholar
[5] Vasile, M.J., Grigg, D.A., Griffith, J.E., Fitzgerald, E. and Russell, P.E., J. Vac. Sci. Technol. B 9, 3569 (1991).Google Scholar
[6] Russell, P.E., Stark, T.J., Griffis, D.P., Phillips, J.R. and Jarausch, K.F., J. Vac. Sci. Technol. B 16, 2494 (1998).Google Scholar
[7] Vasile, M.J., Biddick, C.J. and Schwalm, S.A., J. Vac. Sci. Technol. B 12, 2388 (1994). M.J. Vasile, C.R. Friedrich, B. Kikkeri, and R. McElhannon, Precision Engineering 19, 180 (1996).Google Scholar
[8] Ishitani, T., Ohnishi, T. and Kawanami, Y., Jap. J. Appl. Phys. 29, 2283 (1990).Google Scholar
[9] Harriott, L.R., Proc. SPIE Int. Soc. Eng., 773, 190 (1987).Google Scholar
[10] Friedrich, C.R. and Vasile, M.J., J. MEMS 5, 33 (1996).Google Scholar
[11] Vasile, M.J., Nassar, R., Niu, Z., Zhang, W. and Liu, S., J. Vac. Sci. Technol. B 15, 2350 (1997).Google Scholar
[12] Thaus, D.M., Stark, T.J., Griffis, D.P. and Russell, P.E., J. Vac. Sci. Technol. B 14, 3928 (1996).Google Scholar