Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-10T18:23:20.329Z Has data issue: false hasContentIssue false

Microdielectric Measurements of Pristine and Modified thin Fullerene (C60) Films

Published online by Cambridge University Press:  15 February 2011

B. Pevznert
Affiliation:
Dept. of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139
A. F. Hebard
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
R. C. Haddon
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
S. D. Senturiat
Affiliation:
Dept. of Physics, MIT, Cambridge, MA 02139
M. S. Dresselhaus
Affiliation:
Dept. of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139 Dept. of Physics, MIT, Cambridge, MA 02139
Get access

Abstract

As developed by Senturia and co-workers [1], microdielectrometry is a technique for measuring complex permittivity utilizing microfabrication technology to incorporate both the interdigital sensing electrodes and associated circuitry on the same microchip. By covering a microdielectrometer chip with a thin layer of C60, it is possible to dynamically monitor the film's frequency response and dielectric properties as a function of doping with selected gases and other species.

It is known that solid C60 has a substantial amount of interstitial volume. The presence of mobile ions in these spaces compromises the breakdown voltage and makes pure C60 unsuitable for applications requiring high-quality dielectric films. However, various immobile ions or neutral species (e.g. oxygen) can be made to fill the interstitial volume, changing the characteristics of the C60 films and, in some cases, improving the dielectric properties. In-situ microdielectric measurements of pristine and modified C60 films were performed for frequencies ranging from 0.005 Hz to 100 kHz. Based on the low-frequency behavior of the dielectric constant, a model is proposed for the mechanism of oxygen diffusion into the interstitial spaces of the fullerene material.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Senturia, S. D. and Garverick, S. L., Method and Apparatus for Microdielectrometry, U.S. Patent No. 4,423,371, Dec. 27, 1983.Google Scholar
[2] Krèitschbmer, W. et al. , Nature 347, 354 (1990).Google Scholar
[3] Hebard, A. F. et al. , Appl. Phys. Lett. 59, 2109 (1991).Google Scholar
[4] Alers, G. B. et al. , Science 257, 511 (1992).Google Scholar
[5] Ren, S. L. et al. , Appl. Phys. Lett. 59, 2678 (1991).Google Scholar
[6] Wang, Y. et al. , Phys. Rev. B 45, 14396 (1992).Google Scholar
[7] Rao, A. M. et al. , Science 259, 955 (1993).Google Scholar
[8] Sohmen, E., Fink, J., and Krlitschmer, W., Z. Phys. B 86, 87 (1992).Google Scholar
[9] Wang, K. A. et al. , Phys. Rev. B 48, 11375 (1993).Google Scholar
[10] Eklund, P. C. et al. , in Thin Solid Films, edited by Gruen, D. M. (World Scientific Publishing Co. Ltd., Singapore, 1995).Google Scholar
[11] Wooten, F., Optical Properties of Solids (Academic, New York, 1972).Google Scholar
[12] Saito, S. and Oshiyama, A., Phys. Rev. Lett. 66, 2637 (1991).Google Scholar
[13] Kelly, M. K. et al. , Phys. Rev. B 46, 4963 (1992).Google Scholar
[14] Lucas, A. et al. , Phys. Rev. B 45, 13694 (1992).Google Scholar
[15] Hertel, I. V. et al. , Phys. Rev. Lett. 68, 784 (1992).Google Scholar
[16] Yannoni, C. S. et al. , J. Phys. Chem. 95, 9 (1991).Google Scholar
[17] Shi, X. D. et al. , Phys. Rev. Lett. 68, 827 (1992).Google Scholar
[18] Jonscher, A. K., Dielectric Relazation in Solids (Chelsea Dielectrics Press, London, 1983).Google Scholar
[19] Senturia, S. D., Sheppard, J. N. F., Lee, H. L., and Day, D. R., J. Adhesion 15, 69 (1982).Google Scholar
[20] Sheppard, N. F., Day, D. R., Lee, H. L., and Senturia, S. D., Sensors and Actuators 2, 263 (1982).Google Scholar
[21] Garverick, S. L. and Senturia, S. D., IEEE Trans. on Electron Devices ED-29, 90 (1982).Google Scholar
[22] Hoshimono, K. et al. , Jpn. J. of Appl. Phys. 32, L1070 (1993).Google Scholar
[23] Minami, N. and Sato, M., Synthetic Metals 56, 3092 (1993).Google Scholar
[24] Assink, R. A. et al. , J. of Mater. Res. 7, 2136 (1992).Google Scholar