Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T18:13:44.976Z Has data issue: false hasContentIssue false

The Meyer-Neldel Rule in Conductivity of Microcrystalline Silicon

Published online by Cambridge University Press:  01 February 2011

Sanjay K. Ram
Affiliation:
Department of Physics, Indian Institute of Technology Kanpur, Kanpur-208016, India
Satyendra Kumar
Affiliation:
Department of Physics, Indian Institute of Technology Kanpur, Kanpur-208016, India
P. Rocai Cabarrocas
Affiliation:
LPICM, UMR 7647 – CNRS – Ecole Polytechnique, 91128 Palaiseau Cedex, France
Get access

Abstract

The dark conductivity (σd) has been measured from 300 to 440K on undoped hydrogenated microcrystalline silicon (μc-Si:H) films having different thicknesses. The carrier transport is found to be thermally activated with single activation energy (Ea) in all the samples. The Ea increases as the film thickness decreases. At the same time logarithmic of dark conductivity prefactor (σo) is found to follow a linear relation with activation energy, known as the Meyer-Neldel rule (MNR). Results are explained in terms of increased degree of disorder in thinner samples. Thus change in Ea with the film thickness is directly related to the density of localized states at the Fermi level in grain boundary (GB). Therefore varying the film thickness and, hence, the exponential density of states induces a statistical shift of Fermi level which gives rise to the observed MNR.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Meyer, W. and Neldel, H., Z. Tech. Phys., 18, 588 (1937).Google Scholar
2. Jackson, W.B., Phys. Rev. B., 38, 3595 (1988).10.1103/PhysRevB.38.3595Google Scholar
3. Yelon, A., Movaghar, B., and Branz, H.M., Phys. Rev. B., 46, 12244 (1992).Google Scholar
4. Overhof, H. and Beyer, W., Philos. Mag. B 47, 377 (1983).10.1080/13642812.1983.10590676Google Scholar
5. Yoon, B.G., Lee, C., and Jang, J., J. Appl. Phys. 60, 673 (1986).Google Scholar
6. Drusedau, T., Wegener, D., and Bindemann, R., Phys. Stat. Sol. (b) 140, K27 (1987).10.1002/pssb.2221400138Google Scholar
7. Elliott, S.R., Physics of Amorphous Materials, 2nd ed., Longman Group UK Limited, England, (1990).Google Scholar
8. Premchandran, V., Narasimhan, K.L., and Bapat, D.R., Phys. Rev. B., 29, 7073 (1984).Google Scholar
9. Brenot, R., Vanderhaghen, R., Drevillon, B., and Cabarrocas, P. Rocai, Appl. Phys. Lett. 74, 58 (1999).Google Scholar
10. Cabarrocas, P. Rocai, Brenot, R., Bulkin, P., Vanderhaghen, R., Drevillon, B., and French, I., J. Appl. Phys. 86, 7079 (1999).10.1063/1.371795Google Scholar
11. Overhof, H., and Otte, M., Proceedings of the International Symposium on Condensed Matter Physics, Varna, pp 23 (1996)Google Scholar
12. Lucovsky, G. and Overhof, H., J. Non-Cryst. Solids, 164-166, 973 (1993).10.1016/0022-3093(93)91160-5Google Scholar
13. Fluckiger, R., Meier, J., Goetz, M., and Shah, A., J. Appl. Phys. 77, 712 (1995).10.1063/1.358992Google Scholar
14. Kumar, S., Brenot, R., Kalache, B., Tripathi, V., Vanderhaghen, R., Drevillon, B. and Cabarrocas, P. Rocai, Solid State Phenomena, 80-81, 237 (2001).Google Scholar
15. Ram, S.K., Kumar, S., Vanderhagen, R., Cabarrocas, P. Rocai, J. Non-Cryst. Solids, (2001) (in press).Google Scholar
16. Svrcek, V., Pelant, I., Kocka, J., Fojtik, P., Rezek, B., Stuchlikova, H., Fejfar, A., Stuchlik, J., Poruba, A., and Tousek, J., J. Appl. Phys. 89, 1800 (2001).Google Scholar
17. Andoh, N., Hayashi, K., Shirasawa, T., Sameshima, T., Kamisako, K., Sol. Energy Mat.& Sol. Cells, 66, 437 (2001).Google Scholar
18. Lecomber, P.G., Willeke, G. and Spear, W.E., J. Non-Cryst. Solids, 59-60, 795 (1983).10.1016/0022-3093(83)90290-9Google Scholar
19. Stuke, J., J. Non-Cryst. Solids, 97 & 98, 1 (1987).10.1016/0022-3093(87)90007-XGoogle Scholar
20. Mott, N.F. and Davis, E.A., Electronic Processes in Non Crystalline Materials, 2nd ed., Oxford University Press, (1979).Google Scholar
21. Meiling, H., and Schropp, R.E.I., Appl. Phys. Lett. 74, 1012 (1999).10.1063/1.123439Google Scholar