Skip to main content Accessibility help

MeV Si Ions Bombardment Effects on the Thermoelectric Properties of Si/Si+Ge Multi-Layer Superlttice Nanolayered Films

  • Marcus Pugh (a1), S. Budak (a2), Cydale Smith (a3), John Chacha (a4), Kudus Ogbara (a5), Kaveh Heidary (a6), R. B. Johnson (a7), Clauidu Muntele (a8) and D. ILA (a9)...


Effective thermoelectric materials have a low thermal conductivity and a high electrical conductivity. The performance of the thermoelectric materials and devices is shown by a dimensionless figure of merit, ZT = S2σT/K, where S is the Seebeck coefficient, σ is the electrical conductivity, T is the absolute temperature and K is the thermal conductivity. ZT can be increased by increasing S, increasing σ or decreasing K. MeV ion bombardment caused defects and disorder in the film and the grain boundaries of these nano-scale clusters increase phonon scattering and increase the chance of an inelastic interaction and phonon annihilation. We have prepared 100 alternating layers of Si/Si+Ge nanolayered superlattice films using the ion beam assisted deposition (IBAD). The 5 MeV Si ions bombardments have been performed using the AAMU Pelletron ion beam accelerator to make quantum clusters in the nanolayered superlattice films to decrease the cross plane thermal conductivity, increase the cross plane Seebeck coefficient and cross plane electrical conductivity. We have characterized the thermoelectric thin films before and after Si ion bombardments as we measured the cross-plane Seebeck coefficient, the cross-plane electrical conductivity, and the cross-plane thermal conductivity for different fluences


Corresponding author

*Corresponding author: S. Budak; Tel.: 256-372-5894; Fax: 256-372-5855; Email:


Hide All
1 Lim, Su-Kyum, Kim, Min-Young, Oh, Tae-Sung, Thin Solid Films 517 (2009) 41994203.
2 Budak, S. Guner, S. Muntele, C. Ila, D. Nuc. Instr. and Meth. B 267 (2009) 15921595.
3 Zhou, A.J. Zhu, T.J. Zhao, X.B. Materials Science and Engineering B 128 (2006) 174178.
4 Chitroub, M. Besse, F. Scherrer, H. Journal of Alloys and Compounds 467 (2009) 3134.
5 Guner, S. Budak, S. Minamisawa, R. A. Muntele, C. Ila, D. Nuc. Instr. and Meth. B 266 (2008) 1261.
6 Budak, S. Guner, S. Minamisawa, R. A. and ILA, D. Surface and Coating Technology 203 (2009) 24792481.
7 Fan, Xiaofeng, Electron. Lett. 37 (2001) 126.
8 Fan, Xiaofeng, Gehong Zeng, Appl. Phys. Lett. 78 (2001) 1580.
9 Zheng, B. Budak, S. Muntele, C. Xiao, Z. Celaschi, C. Muntele, I. Chhay, B. Zimmerman, R.L. Holland, L.R. Ila, D. Materials in Extreme Environments, Materials Research Society, vol. 929, 2006, p. 81.
10 Zheng, B. Budak, S. Zimmerman, R. L. Muntele, C. B. Chhay and ILA, D. Surface and Coating Technology 201 (2007) 85318533.10.1016/j.surfcoat.2006.12.029
11 Budak, S. Guner, S. Smith, C. Minamisawa, R.A. Zheng, B. Muntele, C. Ila, D. Surface and Coating Technology 203 (2009) 2428–2421.
12 Cahill, D.G. Katiyar, M. Phys. Rev., B 50 (1994) 6077.10.1103/PhysRevB.50.6077
13 Lee, S.M. Cahill, D.G. Appl. Phys. Lett. 70 (1997) 2957.10.1063/1.118755



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed