Skip to main content Accessibility help

Methods of Suppressing Cluster Growth in Silane RF Discharges

  • Masaharu Shiratani (a1), Shinichi Maeda (a1), Yasuhiro Matsuoka (a1), Kenichi Tanaka (a1), Kazunori Koga (a1) and Yukio Watanabe (a1)...


The effects of gas temperature gradient, pulse discharge modulation, hydrogen dilution, gas flow, and substrate materials on growth of clusters below about 10 nm in size in silane parallelplate RF discharges are studied using a high-sensitivity photon-counting laser-light-scattering (PCLLS) method. Thermophoretic force due to the gas temperature gradient between the electrodes drives neutral clusters above a few nm in size toward the cool RF electrode. Pulse discharge modulation is much more effective in reducing the cluster density when it is combined with the gas temperature gradient, and clusters above a few nm in size cannot be detected by the PCLLS method even for the discharge over a few hours. Hydrogen dilution and gas flow are also effective in suppressing growth of clusters, when the H2/SiH4 concentration ratio is above about 5 and the flow velocity is above about 6 cm/s, respectively. Cluster growth rate with a glass or Si substrate is found to be considerably higher than that without the substrate.



Hide All
1. Jelenkovic, B. M. and Gallagher, A., J. Appl. Phys., 82, 1546, (1997).
2. Takai, M., Nishimoto, T., Kondo, M. and Matsuda, A., Proceedings of 17th Syp. Plasma Processing, ed. Sugai, H. (Japan Society of Applied Physics, 2000) p. 9.
3. Shiratani, M. and Watanabe, Y., Rev. Laser Eng., 26, 449, (1998).
4. Shiratani, M., Fukuzawa, T. and Watanabe, Y., Jpn. J. Appl. Phys., 38, 306, (1999).
5. Shiratani, M., Maeda, S., Koga, K. and Watanabe, Y., Jpn. J. Appl. Phys., 39, 287, (2000).
6. Matsuoka, Y., Shiratani, M., Fukuzawa, T., Watanabe, Y. and Kim, K. S., Jpn. J. Appl. Phys., 38, 4556, (1999).
7. Watanabe, Y., Shiratani, M., Kubo, Y., Ogawa, I. and Ogi, S., Appl. Phys. Lett., 53, 1263, (1988).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed