Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-27T04:52:36.541Z Has data issue: false hasContentIssue false

Metastable Alloy Formation By Ion Beam Mixing

Published online by Cambridge University Press:  26 February 2011

F.W. Saris
Affiliation:
FOM-Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
J.F.M. Westendorp
Affiliation:
FOM-Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
A. Vredenberg
Affiliation:
FOM-Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
Get access

Abstract

In Ion Beam Mixing new surface alloys are produced by a combination of vacuum deposition and ion irradiation. One may wonder what the advantages are of this combination. Indeed one may ask:

- Why not just ion implantation?

- Why ion beams instead of laser or electron beams?

- Why ion mixing instead of evaporation only?

- What phases are formed and what is the stability of ion mixed phases?

In an attempt to answer these questions the role of ion beam mixing in modern materials modification will de delineated. Areas of controversy and further development will also be illustrated.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Surface Modification and Alloying by Laser, Ion and Electron Beams, edited by Poate, J.M., Foti, G. and Jacobson, D.C., Plenum Press, 1983.Google Scholar
[2] Ion Beam Modification of Materials, edited by Ullrich, B. Manfred, North Holland -Amsterdam, 1985.Google Scholar
[3] Marwick, A.D. in ref. I p.211.Google Scholar
[4] Shreter, U., So, F.C.T., Paine, B.M. and Nicolet, M.A., MRS Symp.Proc.Vol. 27 (1984), edited by Huber, G.K. et al. (Elsevier Science Publ.Co.Inc.) p.31.Google Scholar
[51 Andersen, H.H., Appl.Phys. 18 (1979) 131 and ref. 3.Google Scholar
[6] Böttiger, J., Nielsen, S.K., Witlow, R.J. and Wierdt, P., Nucl.Instr.and Meth. 218 (1983) 684.CrossRefGoogle Scholar
[7] Wang, Z.-T-L, Westendorp, J.F.M. and Saris, F.W., Nucl.Instr.and Meth. 209/210 (1983) 115.Google Scholar
[8] Westendorp, J.F.M., thesis Univ.Utrecht 1986.Google Scholar
[9] Miedema, A.R., Philips Techn.Rev. 36 (1976) 217.Google Scholar
[10] Johnson, W.L., Cheng, Y.T., Rossum, M. van and Nicolet, M.A. in ref. 2, p.657.Google Scholar
[11] Cheng, Y.T., Rossum, M. van, Nicolet, M.A. and Johnson, W.L., Appl.Phys.Lett. 45 (1984) 185.CrossRefGoogle Scholar
[12] Westendorp, Z.F.M., Rol, P.K., Sanders, J.B. and Saris, F.W., Nucl.Instr. and Meth. B 7/8 (1985) 616.Google Scholar
[13] Westendorp, J.F.M., Saris, F.W. and Littmark, U., to be published, and Littmark, U., Nucl.Instr.and Meth. B 7/8 (1985) 684.Google Scholar
[14] Roush, M.L., Davarya, F., Goktepe-and, O.F. Andreadis, T.D., Nucl.Instr. and Meth. 209/210 (1983) 67.Google Scholar
[15] Nastasi, M., Saris, F.W, Hung, L.S. and Mayer, J.W., J.Appl.Phys. 58 (1985) 3052.Google Scholar
[16] Schwarz, R.B. and Johnson, W.L., Phys.Rev.Lett. 51 (1983) 415.Google Scholar
[17] Clemens, B.M., Johnson, W.L. and Schwarz, R.B., J.-ffon-Cryst.Solids 61–62 (1984) 817.Google Scholar