Hostname: page-component-5c6d5d7d68-txr5j Total loading time: 0 Render date: 2024-08-16T15:35:56.419Z Has data issue: false hasContentIssue false

Metallic Nanoparticles from Single Polyelectrolyte Molecules

Published online by Cambridge University Press:  01 February 2011

Ganna Gorodyska
Affiliation:
Institut für Polymerforschung Dresden, Hohe Strasse 6, 01069 Dresden, Germany
Anton Kiriy
Affiliation:
Institut für Polymerforschung Dresden, Hohe Strasse 6, 01069 Dresden, Germany
Sergiy Minko
Affiliation:
Institut für Polymerforschung Dresden, Hohe Strasse 6, 01069 Dresden, Germany
Manfred Stamm
Affiliation:
Institut für Polymerforschung Dresden, Hohe Strasse 6, 01069 Dresden, Germany
Get access

Abstract

Here we report on the metallization of poly(2-vinylpyridine) (P2VP) by coordination with palladium acetate (PA) followed by reduction with dimethylamine borane (DAB) to metallic palladium. The morphology of the resulting products deposited on a flat surface was analyzed with AFM. If P2VP, PA and DAB are mixed together, the Pd clusters up to 30 nm in diameter are obtained. A two step synthetic procedure was examined. The initially prepared complex P2VPH-1/2(PdCl4) was deposited on Si-wafer and then reduced, leading to the Pd clusters with a narrow size distribution (3 nm height by 100 nm length). Alternately, a step-by-step procedure was used wherein P2VP single molecules were deposited on Si wafers from very dilute acidic aqueous solutions then placed in PA solution and finally reduced with DAB, resulting in the 1.5-5 nm in the diameter wire-shaped Pd nanoparticles with the length of about 350 nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Huang, M. H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R., Yang, P., Science 292, 1897 (2001).Google Scholar
2. Liang, W., Yokojima, S., Ng, M., Chen, G., He, G., J. Am. Chem. Soc. 123, 9830 (2001).Google Scholar
3. Cao, H., Xu, Z., Sang, H., Sheng, D., Tie, C., Adv. Mater. 13, 121 (2001).Google Scholar
4. Andreas, R. P.. Science 273, 1690 (1996).Google Scholar
5. Mössmer, S., Spatz, J., Möller, M., Aberle, T., Schmidt, J., Burchard, W., Macromolecules 33, 4791 (2000).Google Scholar
6. Tsutsumi, K., Funaki, Y., Hirokawa, Y., Hashimoto, T., Langmuir 15, 5200 (1999).Google Scholar
7. Huang, M., Choudrey, Y. P.. Chem. Commun. 12, 1603 (2000). M. P. Zach, K. H. Ng, R. M. Penner. Science 290, 2120 (2000). D. Zhang, L. Qi, J. Ma, H. Cheng. Chem. Mater. 13, 2753 (2001). J. H. Song, Y.Wu, B. Messer, H. Kind, P. Yang. J. Am. Chem. Soc. 123, 10397 (2001). Y. J. Han, J.M. Kim, G. D. Stucky. Chem. Mater. 12, 2068 (2000). T. Thurn-Albrecht, J. Schotter, G. A. Kästle, N. Emley, T. Shibauchi, L. Krusin-Elbaum, K. Guarini, C. T. Black, M. T. Tuominen, T. P. Russell. Science 290, 2126 (2000). A. Govindaraj, B. C. Satishkumar, M. Nath, N. R. Rao. Chem. Mater. 12, 202 (2000). A. Fukuoka, Y. Sakamoto, S. Guan, S. Inagaki, N. Sugimoto, Y. Fukushima, K. Hirahara, S. Iijima, M. Ichikawa. J. Am. Chem. Soc. 123, 3373 (2001). Y. Zhou, S. H. Yu, C. Y.Wang, X. G. Li, Y. R. Zhu, Z. Y. Chen. Adv. Mater. 11, 850 (1999). H. Kang, Y. Jun, J. Park, K. Lee, J. Cheon, Chem. Mater. 2000, 12, 3530-3532. A. Govindaraj, B. C. Satishkumar, M. Nath, N. R. Rao, Chem. Mater. 12, 202 (2000). N.R. Jana, L. Gearheart, C. J. Murphy, Chem. Commun. 7, 617 (2001).Google Scholar
8. Braun, E., Eichen, Y., Sivan, U., Ben-Yoseph, G., Nature 391, 775 (1998). J. Richter et al., Adv. Mater. 12, 507 (2000).Google Scholar
9. Takeda, N., Umemoto, K., Yamaguchi, K., Fujita, M.. Nature 398, 794 (1999).Google Scholar
10. Liu, J., Cheng, L., Song, V., Dong, S.. Langmuir 17, 6747 (2001).Google Scholar
11. Minko, S., Kiriy, A., Gorodyska, G., Stamm, M. J. Am. Chem. Soc. 124, 3218 (2002).Google Scholar