Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-11T23:34:49.617Z Has data issue: false hasContentIssue false

Metal Organic Chemical Vapor Deposition Growth of GaN and GaMnN Multifunctional Nanostructures

Published online by Cambridge University Press:  26 February 2011

Shalini Gupta
Affiliation:
guptasha@ece.gatech.edu, Georgia Institue of Technology, Electrical Engineering, United States
Hun Kang
Affiliation:
Hun Kang , Georgia Institue of Technology, Electrical Engineering, United States
Matthew Kane
Affiliation:
mhkane@ece.gatech.edu, Georgia Institue of Technology, Electrical Engineering, United States
William E Fenwick
Affiliation:
fenwick@ece.gatech.edu, Georgia Institue of Technology, Electrical Engineering, United States
Nola Li
Affiliation:
nola@ece.gatech.edu, Georgia Institue of Technology, Electrical Engineering
Martin Strassburg
Affiliation:
Martin.Strassburg@osram-os.com, Georgia Institue of Technology, Electrical Engineering, United States
Ali Asghar
Affiliation:
a99ali@aol.com, Georgia Institue of Technology, Electrical Engineering, United States
Nikolaus Dietz
Affiliation:
ndietz@gsu.edu, Georgia State University, Physics and Astronomy, United States
Ian T Ferguson
Affiliation:
ianf@ece.gatech.edu, Georgia Institue of Technology, Electrical Engineering, United States
Get access

Abstract

Quantum dots (QDs) have been shown to improve the efficiency and optical properties of opto- electronic devices compared to two dimensional quantum wells in the active region. The formation of self-assembled GaN nanostructures on aluminum nitride (AlN) grown on sapphire substrates by Metal Organic Chemical Vapor deposition (MOCVD) was explored. This paper reports on the effect of in-situ activation in nitrogen atmosphere on MOCVD grown GaN nanostructures. The effect of introducing manganese in these nanostructures was also studied. Optically active nanostructures were successfully obtained. A blue shift is observed in the photoluminescence data with a decrease in nanostructure size.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Nakamura, S., and Chichibu, S., Introduction to Nitride Semiconductor Blue Laser and Light Emitting Diodes. 2000: CRC Press. 372 Google Scholar
2 Gil, B., Group III Nitride Semiconductor Compounds 1998: Oxford University Press, England.Google Scholar
3 Bimberg, D., Grundmann, M., and Ledentsov, N., Quantum Dot Heterostructures. 1999: John Wiley & Sons, England.Google Scholar
4 Daruka, I., et al. , Phys. Rev. Lett., 1997. 79(19): p. 37083711.Google Scholar
5 Widmann, F., et al. , J. Appl. Phys., 1998. 83(12): p. 76187624.Google Scholar
6 Daudin, B., et al. , Physica E, 2004. 21: p. 540.Google Scholar
7 Miyamura, M., et al. , Appl. Phys. Lett., 2002. 80: p. 39373939.Google Scholar
8 Dietl, T., et al. , Science, 2000. 287: p. 1019.Google Scholar
9 Kane, M., et al. , Semicond.Sci.Technol., 2005. 20: p. L5.Google Scholar
10 Rosa, A.L., et al. , Appl. Phys. Lett., 2002. 80: p. 20082010.Google Scholar
11 Tanaka, S., et al. , Jpn. J. Appl. Phys. Part 2, 2000. 39: p. L831.Google Scholar
12 Gupta, S., et al. , Mat. Res. Soc. Symp. Proc., 2005: p. E.12.7.1–E.12.7.6.Google Scholar
13 Solomon, G., et al. , Appl. Phys. Lett., 1995. 66: p. 31613163.Google Scholar
14 Gogneau, N., et al. , J. Appl. Phys., 2003. 94(4): p. 22542260.Google Scholar
15 Gupta, S., et al. , Journal of Crystal Growth, 2005, accepted for publication.Google Scholar
16 Kratzert, P., et al. , Phys. Stat. sol.(b), 2001. 224: p. 179.Google Scholar
17 Ross, R., et al. , Science, 1999. 279: p. 1931.Google Scholar
18 Daudin, B., et al. , Microelectronics Journal, 1999. 30: p. 353356.Google Scholar
19 Kuroda, S., et al. , Phys. Stat. sol. (b), 2003. 240(2): p. 443.Google Scholar