Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-21T02:51:59.922Z Has data issue: false hasContentIssue false

Mesoporous Carbon Materials as Electrodes for Electrochemical Double-Layer Capacitor

Published online by Cambridge University Press:  26 February 2011

Sea Park
Affiliation:
parksh1@ornl.gov, Oak Ridge National Laboratory, Materials Science and Technology Division, Bethel Valley Rd., Oak Ridge, TN, 37830, United States
Chengdu Liang
Affiliation:
liangcn@ornl.gov, Oak Ridge National Laboratory, Chemical Sciences Division, Bethel Valley Rd., Oak Ridge, TN, 37830, United States
Dai Sheng
Affiliation:
dais@ornl.gov, Oak Ridge National Laboratory, Chemical Sciences Division, Bethel Valley Rd., Oak Ridge, TN, 37830, United States
Nancy Dudney
Affiliation:
dudneynj@ornl.gov, Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, TN, 37830, United States
David DePaoli
Affiliation:
depaolidw@ornl.gov, Oak Ridge National Laboratory, Nuclear Science and Technology Division, Oak Ridge, TN, 37830, United States
Get access

Abstract

Nanostructured carbon materials with a regular array and narrow size distribution of mesopores have been synthesized at Oak Ridge National Laboratory via the self-assembly of block copolymers as soft templates. One promising application for these materials is as electrodes for electrochemical double-layer capacitors. To evaluate the performance, electrodes were prepared by coating the precursor onto fibrous carbon paper, followed by curing and pyrolysis at 850°C. The resulting mesoporous carbon has a surface area of 310 m2/g and an average pore size of 8.5 nm. Results from cyclic voltammetry and impedance spectroscopy experiments using a sulfuric acid electrolyte showed high specific capacitance values of up to 300 F/g. For comparison, a commercially available aerogel carbon coated paper was also examined.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Winter, M.; Brodd, R. J., Chem. Rev. 104, 4245 (2004).Google Scholar
2. Pandolfo, A.G.; Hollenkamp, A.F., J. Power Sources 157, 11 (2006).Google Scholar
3. Liang, C.D.; Dai, S., J. Am. Chem. Soc. 128, 5316 (2006).Google Scholar
4. Liang, C.D.; Hong, K.L.; Guiochon, G.A.; Mays, J.W.; Dai, S., Angew. Chem. Int. Ed., 43, 5785 (2004).Google Scholar
6. Pekala, R.W., Farmer, J.C.; Alviso, C.T.; Tran, T.D.; Mayer, S.T.; Miller, J.M.; Dunn, B., J. Noncryst. Solids, 225, 74 (1998).Google Scholar
7. Brunauer, S.; Emmett, P.H.; Teller, E., J. Am. Chem. Soc. 60, 309 (1938). Lowell, S.; Shields, J.E.; Thomas, M.A.; Thommes, M., Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density, Springer, Dordrecht, 2004.Google Scholar
8. Barrett, E.P.; Joyner, L.G., Halenda, P.H., J. Am. Chem. Soc. 73, 373 (1951).Google Scholar
9. Verbrugge, M.W. and Liu, P., J. Electrochem. Soc., 153, A1237 (2006).Google Scholar
10. Fischer, U.; Saliger, R.; Bock, V.; Petricevic, R.; Fricke, J., J. Porous Mat. 4, 281 (1997).Google Scholar
11. Yamada, H.; Nakamura, H.; Nakahara, F.; Moriguchi, I.; and Kudo, T., J. Phys. Chem. C, ASAP article, Dec. 5 (2006).Google Scholar
12. Kinoshita, K., Carbon: Electrochemical and Physiochemical Properties, Wiley-Interscience, New York, 1988.Google Scholar
13. Qu, D.; Shi, H., J. Power Sources 74, 99 (1998).Google Scholar