Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-20T23:11:33.911Z Has data issue: false hasContentIssue false

Meso-Ordered Silica Films Formed by Sugar-Based Surfactants

Published online by Cambridge University Press:  01 February 2011

Uraka Lavrenèiè-Štangar
Affiliation:
Institute of Materials Chemistry, Vienna University of Technology Getreidemarkt 9/ 165, A- 1060 Vienna, Austria
Michael Puchberger
Affiliation:
Institute of Materials Chemistry, Vienna University of Technology Getreidemarkt 9/ 165, A- 1060 Vienna, Austria
Nicola Hüsing
Affiliation:
Institute of Materials Chemistry, Vienna University of Technology Getreidemarkt 9/ 165, A- 1060 Vienna, Austria
Get access

Abstract

Sugar-based amphiphilic molecules are used as templates in the sol-gel processing of thin silica films. The films are prepared relying on solvent evaporation-induced self-assembly during dip-coating in a humidity controlled chamber. Different surfactants, such as the commercially available alkyl glycosides (e.g. n-octyl β-D-glucopyranoside and n-dodecyl β-D-maltopyranoside), are compared with respect to their ability to cooperatively self-assemble in alcoholic silicate solutions. The larger polar headgroup (maltose) decreases the critical packing parameter and thus beneficially influences the formation of a favorable hexagonal phase over the lamellar phase, which is formed with the glucose-based surfactant. The inorganic-organic composite films show a strong influence on the humidity during their synthesis. For nonstructured films, ordering could be achieved by exposing the as-deposited films to a high humidity for several hours. The final material is characterized by X-ray diffraction, nitrogen sorption and solid state NMR techniques.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kresge, C.T. Leonowicz, M.E. Roth, W.J. Vartuli, J.C. Beck, J.S. Nature 359, 710 (1992)Google Scholar
2. Monnier, A. Schüth, F., Huo, Q. Kumar, D. Margolese, D. Maxwell, R.S. Stucky, G.D. Krishnamurty, M., Petroff, P. Firouzi, A. Janicke, M. Chmelka, B.F. Science 261, 1299 (1993)Google Scholar
3. Ozin, G.A. Chem. Commun. 419 (2000).Google Scholar
4. Mann, S. Burkett, S.L. Davis, S.A. Fowler, C.E. Mendelson, N.H. Sims, S.D. Walsh, D. Whilton, N.T., Chem. Mater. 9, 2300 (1997)Google Scholar
5. Barton, T.J. Bull, L.M. Klemperer, W.G. Loy, D.A. McEnaney, B. Misono, M. Monson, P.A., Pez, G. Scherer, G.W. Vartuli, J.C. Yaghi, O.M. Chem. Mater. 11, 2633 (1999)Google Scholar
6. Grosso, D. Balkenende, A.R. Albouy, P.A. Lavergne, M. Babonneau, F. J. Mater. Chem. 10, 2085 (2000).Google Scholar
7. Lu, Y. Yang, Y. Sellinger, A. Lu, M. Huang, J. Fan, H. Haddad, R. Lopez, G. Burns, A.R. Sasaki, D.Y. Shelnutt, J. Brinker, C.J. Nature 410, 913 (2001)Google Scholar
8. Zhao, D. Yang, P. Melosh, N. Feng, J. Chmelka, B.F. Stucky, G.D. Adv. Mater. 10, 1380, 1998.Google Scholar
9. Lu, Y. Ganguli, R. Drewien, C.A. Anderson, M.T. Brinker, C.J. Gong, W.L. Guo, Y.X. Soyez, H., Dunn, B. Huang, M.H. Zink, J.I. Nature 398, 364 (1997)Google Scholar
10. Graham, A.L. Carlson, C.A. Edmiston, P.L. Anal. Chem. 74, 458 (2002)Google Scholar
11. Jung, J.H. Amaike, M. Nakashima, K. Shinkai, S. J. Chem. Soc., Perkin Trans. 2 (2001) 1938.Google Scholar
12. Jung, J.H. Amaike, M. Shinkai, S. Chem. Commun. 2343 (2000).Google Scholar
13. Markowitz, M.A. Kust, P.R. Deng, G. Schoen, P.E. Dordick, J.S. Clark, D.S. Gaber, B.P. Langmuir 16, 1759 (2000)Google Scholar
14. Hunnius, M. Rufinska, A. Maier, W.F. Microporous Mesoporous Mater. 29, 389 (1999)Google Scholar
15. Pinel, C. Loisil, P. Gallezot, P. Adv. Mater. 9, 582 (1997)Google Scholar
16. Katz, A. Davis, M.E. Nature 403, 286 (2000)Google Scholar
17. Nilsson, F. Söderman, O., Langmuir 12, 902 (1996)Google Scholar
18. Sakya, P. Seddon, J.M. Vill, V. Liq. Cryst. 23, 409 (1997)Google Scholar
19. Minden, H.M. von, Brandenburg, K. Seydel, U. Koch, M.H.J. Garamus, V. Willumeit, R. Vill, V., Chem. Phys. Lipids 106, 157 (2000)Google Scholar
20. Boyd, B.J. Drummond, C.J. Krodkiewska, I. Grieser, F. Langmuir 16, 7359 (2000)Google Scholar
21. Morihara, K. Takiguchi, M. Shimada, T. Bull. Chem. Soc. Jpn. 67, 1078 (1994)Google Scholar
22. Jung, J.H. Ono, Y. Hanabusa, K. Shinkai, S. J. Am. Chem. Soc. 122, 5008 (2000)Google Scholar
23. Lahav, M. Kharitonov, A.B. Willner, I. Chem. Eur. J. 7, 3992 (2001)Google Scholar
24. Jung, J.H. Kobayashi, H. Masuda, M. Shimizu, T. Shinkai, S. J. Am. Chem. Soc. 123, 8785 (2001).Google Scholar
25. Israelachvili, J.N. Intermolecular and Surface Forces, 2nd ed. (Academic Press Inc., San Diego, 1998) p. 366.Google Scholar
26. Grosso, D. Babonneau, F. Albouy, P.-A. Amenitsch, H. Balkenende, A.R. Brunet-Bruneau, A., Rivory, J. Chem. Mater. 14, 931, (2002).Google Scholar