Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-06T16:17:23.759Z Has data issue: false hasContentIssue false

Medium-Range Order in a-Si:H Below and Above the Onset of Microcrystallinity

Published online by Cambridge University Press:  15 February 2011

D.L. Williamson*
Affiliation:
Department of Physics, Colorado School of Mines, Golden, CO 80401
Get access

Abstract

Medium range order (MRO) and the formation of microcrystallites in a-Si:H prepared by plasma-enhanced chemical vapor deposition (PECVD) and hot-wire chemical vapor deposition (HWCVD) have been probed by systematic x-ray diffraction studies with films as thin as those used in solar cells. Effects of substrate temperature, hydrogen dilution, film thickness, and type of substrate have been examined. High-hydrogen-diluted films of 0.5 μm thickness, using optimized deposition parameters for solar cell efficiency and stability, are found to be partially microcrystalline (μc) if deposited directly on stainless steel (SS) substrates but are fully amorphous provided a thin (20 nm) n-layer of a-Si:H or μc-Si:H is first deposited on the SS. The latter predeposition does not prevent partially microcrystallinity if the films are grown thicker (1.5 to 2.5 μm) and this is consistent with a recently proposed phase diagram of thickness versus hydrogen dilution. Analysis of the first (lowest angle) scattering peak of the a-Si:H phase demonstrates that its width, directly related to MRO, is reduced by heavier hydrogen dilution in PECVD growth or by increased substrate temperature in HWCVD growth. The narrowest width of fully amorphous material correlates with better solar cell stability and this is not likely related to bonded hydrogen content since it is quite different in the optimized PECVD and HWCVD a-Si:H. A wide range of MRO apparently exists in the residual amorphous phase of the mixed a/μc material.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hsu, K-C. and Hwang, H L., Appl. Phys. Lett. 61, 2075 (1992).Google Scholar
2. Xu, X., Yang, J., and Guha, S., J. Non-Cryst. Solids 198–200, 60 (1996).Google Scholar
3. Kroll, U., Meier, J., Shah, A., Mikhailov, S., and Weber, J., J. Appl. Phys. 80, 4971 (1996).Google Scholar
4. Tsu, D.V., Chao, B.S., Ovshinsky, S.R., Guha, S., and Yang, J., Appl. Phys. Lett. 71, 1317 (1997).Google Scholar
5. Cabarrocas, P. Roca i, Hamma, S., Sharma, S.N., Viera, G., Bertran, E., and Costa, J., J. Non-Cryst. Solids 227–230, 871 (1998).Google Scholar
6. Koh, J., Fujiwara, H, Collins, R.W., Lee, Y., and Wronski, C.R., J. Non-Cryst. Solids 227–230, 73 (1998).Google Scholar
7. Kroll, U., Meier, J., Torres, P., Pohl, J., and Shah, A., J. Non-Cryst. Solids 227–230, 68 (1998).Google Scholar
8. Sheng, S., Liao, X., Kong, G., and Han, H., Appl. Phys. Lett. 73, 336 (1998).Google Scholar
9. Koh, J.H., Lee, Y.H., Fujiwara, H., Wronski, C.R., and Collins, R.W., AppI. Phys. Lett. 73, 1526 (1998).Google Scholar
10. Bertran, E., Sharma, S.N., Viera, G., Costa, J., St'ahel, P., and Cabarrocas, P. Roca i, J. Mater. Res. 13, 2476 (1998).Google Scholar
11. Kamei, T., Stradins, P., and Matsuda, A., Appl. Phys. Lett. 74, 1707 (1999).Google Scholar
12. Guha, S., Yang, J., Williamson, D.L., Lubianiker, Y., Cohen, J.D., and Mahan, A.H., Appl. Phys. Lett. 74, 1860 (1999).Google Scholar
13. Mahan, A.H., Carapella, J., Nelson, B.P., and Crandall, R.S., J. Appl. Phys. 69, 6728 (1991).Google Scholar
14. Papadopulos, P., Scholz, A., Bauer, S., Schröder, B., and Oechsner, H., J. Non-Cryst. Solids 164–166, 87 (1993).Google Scholar
15. Heintze, M., Zedlitz, R., Wanka, H.N., and Schubert, M.B., J. Appl. Phys. 79, 2699 (1996).Google Scholar
16. Wu, Y., Stephen, J.T., Han, D.X., Rutland, J.M., Crandall, R.S., and Mahan, A.H., Phys. Rev. Lett. 77, 2049 (1996).Google Scholar
17. Liu, Xiao, White, B.E. Jr, Pohl, R.O., Iwanizcko, E., Jones, K.M., Mahan, A.H., Nelson, B.N., Crandall, R.S., and Veprek, S., Phys. Rev. Lett. 78, 4418 (1997).Google Scholar
18. Mahan, A.H., Williamson, D.L., and Furtak, T.E., Mat. Res. Soc. Symp. Proc. 467, 657 (1998).Google Scholar
19. Remes, Z., Vanecek, M., Torres, P., Kroll, U., Mahan, A.H., and Crandall, R.S., J. Non-Cryst. Solids 227–230, 876 (1998).Google Scholar
20. Bauer, S., Schröder, B., and Oechsner, H., J. Non-Cryst. Solids 227–230, 34 (1998).Google Scholar
21. Brockhoff, A.M., Ullersma, E.H.C., Meiling, H., Habraken, F.H.P.M., and Weg, W.F. van der, Appl. Phys. Lett. 73, 3244 (1998).Google Scholar
22. Moss, S.C. and Price, D.L., in Physics of Disordered Materials, edited by Adler, D., Fritzsche, H., and Ovshinsky, S.R. (Plenum, New York, 1985) p.77.Google Scholar
23. Elliott, S.R., Nature 354, 445 (1991); J. Phys.:Condens. Matter 4, 7661 (1992).Google Scholar
24. Cervinka, L., J. Non-Cryst. Solids 232–234, 1 (1998).Google Scholar
25. Tanaka, K., Jpn. J. Appl. Phys. 37, 1747 (1998).Google Scholar
26. Bletry, J., Phil. Mag. B 62, 469 (1990).Google Scholar
27. Dixmier, J., J. Phys. I France 2, 1011 (1992).Google Scholar
28. Uhlherr, A. and Elliott, S.R., Phil. Mag. B 71, 611 (1995).Google Scholar
29. Essamet, M., Hepp, B., Proust, N., and Dixmier, J., J. Non-Cryst. Solids 97&98, 191 (1987).Google Scholar
30. Warren, B.E., X-ray Diffraction (Addison-Wesley, Reading MA, 1969).Google Scholar
31. Sokolov, A.P., Kisliuk, A., Soltwisch, M., and Quitmann, D., Phys. Rev. Lett. 69, 1540 (1992).Google Scholar
32. Williamson, D.L., Mat. Res. Soc. Symp. Proc. 377, 251 (1995).Google Scholar
33. Treacy, M.M.J. and Gibson, J.M., Acta Cryst. A52, 212 (1996).Google Scholar
34. Gibson, J.M., Treacy, M.M.J., Voyles, P.M., Jin, H-C., and Abelson, J.R., Appl. Phys. Lett. 73, 3093 (1998).Google Scholar
35. Yang, J., Banerjee, A., and Guha, S., Appl. Phys. Lett. 70, 2975 (1997).Google Scholar
36. Mahan, A.H., Reedy, R.C. Jr, Iwaniczko, E., Wang, Q., Nelson, B.P., Xu, Y., Gallagher, A.C., Branz, H.M., Crandall, R.S., Yang, J., and Guha, S., Mat. Res. Soc. Symp. Proc. 507, 119 (1998).Google Scholar
37. Cabarrocas, P. Roca i, Layadi, N., Heitz, T., Drevillon, B., and Solomon, I., Appl. Phys. Lett. 66, 3609 (1995).Google Scholar
38. Shirai, H., Jpn. J. Appl. Phys. 34, 450 (1995).Google Scholar
39. Ossikovski, R. and Drevillon, B., Phys. Rev. B 54, 10530 (1996).Google Scholar
40. Tozlov, M., Finger, F., Carius, R., and Hapke, P., J. Appl. Phys. 81, 7376 (1997).Google Scholar
41. Smith, L.L., Srinivasan, E., and Parsons, G.N., J.Appl. Phys. 82, 6041 (1997).Google Scholar
42. Mahan, A.H., Vanacek, M., Poruba, A., Vorlicek, V., Crandall, R.S., and Williamson, D.L., Mat. Res. Soc. Symp. Proc. 507, 825 (1998).Google Scholar
43. Mahan, A.H. and Vanacek, M., AIP Conf. Proc. 234, 211 (1991).Google Scholar
44. Guha, S., Current Opinion in Solid State and Materials Science 2, 425 (1997).Google Scholar
45. Shima, M, Isomura, M., Maruyama, E., Okamoto, S., Haku, H., Wakisaka, K., Kiyama, S., and Tsuda, S., Jpn. J. Appl. Phys. 37, 6322 (1998).Google Scholar
46. Platz, R., Wagner, S., Hof, C., Shah, A., Wieder, S., and Rech, B., J. Appl. Phys. 84, 3949 (1998).Google Scholar