Skip to main content Accessibility help
×
Home

Mechanisms of Ionic Transport in Membranes for Batteries and Fuel Cells

  • J. Woods Halley (a1), Lingling Jia (a2) and Sean Bowman (a3)

Abstract

Ionic transport in electrolyte membranes limits performance in both battery and fuel cell membranes. The problems have been well known for years, sometimes decades, but empirical progress in solving them has been slow. The focus here is on studies to improve understanding of transport mechanisms, which despite extensive study, remain in dispute in several important cases. For lithium transport in polymer membranes, I will review simulation work by ourselves and others, and contend that the original qualitative picture by Ratner and coworkers is confirmed in many respects by recent work. It means, however, that the fundamental difficulty is that the transport is controlled by torsion forces in the hydrocarbon backbone which are extremely difficult to manipulate experimentally. Turning to possibly promising additives, I review recent work on proton and lithium transport in ionic liquids, on which promising experimental results have been reported. The data, both from simulation and experiment, indicate nontrivial collective effects in the transport properties which need to be sorted out to control these systems. In the case of proton transport, we report results suggesting that high mobilities occur in acid-ionic mixtures with a common anion in mixtures near phase separation.

Copyright

References

Hide All
1 Ohno, H., Washiro, S. and Yoshizawa, M, in “Ionic Liquids in Polymer Systems”, Brazel, S. and Rogers, R. D. eds. , American Chemical Society, Washington D. C. (2005) p. 89
2 Shin, J. H., Henderson, W. A. and Passerini, S., “PEO-based polymer electrolytes with ionic liquids and their use in lithium metal-polymer electrolyte batteriesJ. Electrochem. Soc. 152, A978 (2005)
3 Henderson, W. A. and Passerini, S., “Phase behavior of ionic liquid-LiXmixtures: Pyrrolidinium cations and TFSI- anions”, Chem. Matt 16, 2881 (2004)
4 Castriota, M., Caruso, T.,Agostino, R. G., Cazzanelli, E., Henderson, W., and Passerini, S., “Raman investigation of the ionic liquid N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide and its mixture with LiN(SO2 CF3)2 ”, Journal of Physical Chemistry A 109, 9296 (2005)
5 Shin, J. H., Henderson, W. A. and Passerini, S., “An elegantfix for polymer electrolytesElectrochemical and Solid State Letters 8, A125–A127 (2005)
6 Jia, Lingling, Nguyen, Dat, Halley, J. W., Pham, Phat, Lamanna, William and Hamrock, Steven, “Proton Transport in HTFSI-EMI-TFSIMixtures: Experiment and Theory”, Journ. of the Electrochemical Society 156(1) B136–B151
7 Boden, N., Leng, S. A., Ward, I. M., “Ionic conductivity and diffusivity n polyethylene oxide/electrolyte solutions as models for polymer electrolytesSolid State Ionics 45, 261 (1991)
8 Ratner, M. in Polymer Electrolyte Reviews Vol. 1 ed. MacCallum, J. R and Vincent, C. A., Elsevier, London 1987 p. 173
9 Gray, F. M., Solid Polymer Electrolytes (VCH Pub. NY, 1991)
10 Muller-Plathe, F., “Permeation of polymers- a computational approachActa Polymerica 45(4), 259(1994)
11 Mckechnie, J.I., Brown, D. and Clarke, J.H.R., “Methods of generating dense relaxed amorphous polymer samples for use in dynamic simulationsMacromolecules, 25, 1562 (1992).
12 Brown, D., Clarke, J.H.R., Okuda, M. and Yamazaki, T., J. Chem. Phys.Preparation of polymer melt samples for computer simulation studies100, 6011 (1994).}
13 Neyertz, S. and Brown, D., “Computer simulation study of the chain configurations in poly(ethylene oxide)-homolog meltsJ. Chem. Phys. 102, 9725 (1995).
14 Catlow, C.R.A., and Mills, G.E., “Computer simulation of ionically conducting polymersElectrochimica Acta 40, 2057 (1995).
15 Neyertz, S., Brown, D. and Thomas, J. O., Computational Polymer Science 5, 107120, (1995).
16 Neyertz, S. and Brown, D., ”Local structure and mobility of ions in polymer electrolytes: a molecular dynamics simulation study of the amorphous PEOxNal system”, Journal of Chemical Physics 104, 37973809 (1996).
17 Annis, B. K., Kim, M.-H., Wignall, G. D., Borodin, O. and Smith, G. D., “Study of the influence of LiI on the chain conformations of poly(ethyleneoxide) in the melt by smallangle neutron scattering and molecular dynamics simulationsMacromolecules 33, 75447548, (2000).
18 Borodin, O., “Force field development and MD simulations of poly(ethylene oxide)/LiBF4 polymer electrolytesJournal of Physical Chemistry B 107 (28): 68246837 (2003)
19 van, A. Zon, Bel, G. J., Mos, B., Verkerk, P. and Leeuw, S. W. De, “Structural relaxation inpoly(ethylene oxide)-salt solutionsComputational materials Science 17, 265268,(2000).
20 Mos, B., Verkerk, P., Pouget, S., Zon, A. van, Bel, G. J., Leeuw, S. W. de and Eisenbach, C. D., “Dynamics in polyethyleneoxide-alkali iodide complexes investigated by neutron spin-echo spectroscopy and molecular dynamics simulations”, The Journal of chemical physics 113, 47,(2000).
21 Borodin, O. and Smith, G. D., “Molecular dynamics simulations of poly(ethylene) oxide LiI melts. 2. Dynamic properties”, Macromolecules 33, 22732283, (2000)
22 Ennari, J., Neelov, I. and Sundholm, F., “Molecular dynamics simulation of the structure of PEO based solid polymer electrolytesPolymer Guildford 41, 40574063, (2000).
23 Ennari, J., Neelov, I. and Sundholm, F., “Simulation of a PEO based solid polyelectrolyte, comparison of the CMM and the Ewald summation methodPolymer Guildford 41, 21492155, (2000).
24 Borodin, O. and Smith, G. D., “Molecular dynamics simulations of poly(ethylene oxide)/LiI melts. 1. Structural and conformational properties”, Macromolecules 31, 83968406, (1998).
25 Lin, B.. Boinske, P. T. and Halley, J. W., ”Molecular dynamics model of the amorphous regions of polyethylene oxideJournal of Chemical Physics 105, (1996)
26 Halley, J. W., Duan, Yuhua, Nielsen, B., Redfern, Paul C., and Curtiss, Larry A., “Simulation of polyethylene oxide: Improved structure using better models for hydrogen and flexible walls”, Journal of Chemical Physics 115, 3957 (2001)
27 Johnson, J., Saboungi, M-L., Price, D. L., Ansell, S., Russell, T. P., Halley, J. W. and Nielsen, B., “Atomic structure of solid and liquid polyethylene oxideJournal of Chemical Physics 109, 7005(1998)
28 Halley, J. W., Duan, Y., Curtiss, L. A. and Baboul, A. G., “Lithium perchlorate ion pairing in a model of amorphous polyethylene oxide”, J. Chem. Phys. 111, 3302 (1999)
29 Duan, Yuhua, Halley, J. W., Curtiss, Larry, Redfern, Paul, “Mechanisms of lithium transport in amorphous polyethylene oxideJ. Chem. Physics 122, 54702 (2005)
30 Diddens, D., Heuer, A., Borodin, O., Macrocules 43, 2028 (2010)
31 Ishikawa, Masashi, Sugimoto, Toshinori, Kikuta, Manabu, Ishiko, Eriko and Kono, Michiyuki, Journal of Power Sources 162, 658 (2006)
32 Ma, Y.-L., Wainright, J. S., Litt, M. H., Savinell, R. F., Journal of the Electrochemical Society 151, A8 (2004)
33 Williams, M. V., Kunz, H. R., Fenton, J. M., Journal of Power Sources 135, 122(2004)
34 Masten, D. A., Bosco, A. D., Handbook of Fuel Cells:Fundamentals, Technology and Applications, Vol 4, Vielstien, W., Gasteiger, H. A., Lamm, A., Eds. John Wiley sol;& Sons: West Sussex, UK, 714724 (2003)
35 Hamrock, Steven J. and Yandrasits, Michael A. ,Polymer Reviews 46, 219 244 (2006)
36 Paddison, S. J., Zawodzinski, T. A., “Molecular modeling of the pendant chainin Nafion”, Solid State Ionics 113–115, 333 (1998)
37 Eikerling, M., Paddison, S. J., Zawodzinski, T. A. Jr., “Molecular orbital calculations of proton dissociation and hydration ofvarious acidic moieties for fuel cell polymersJournal of New Materials for Electrochemical Systems 5, 15 (2002)
38 Yamamoto, S., Hyodo, S-A., “A computer simulation study of the mesoscopic structure of the polyelectrolyte membrane Nafion”, Polymer Journal, 35, 519 (2003)
39 Mologin, D. A., Khalatur, P. G., Khokhlov, A. R., “Structural organization of watercontaining Nafion: A cellular-automaton-based simulation”, Macromolecular Theory and Simulations 11, 587 (2002)
40 Hayashi, H., Yamamoto, S., , S., Hyodo, S.-A., “Lattice-Boltzmann simulations of flow through Nafion polymer membranesInternational Journal of Modern Physics B 17, 135 (2003)
41 Paddison, S. J., Paul, R., Zawodzinski, T. A., “Proton friction and diffusion coefficients in hydrated polymer electrolyte membranes: Computations with a non-equilibrium statistical mechanical modelJournal of Chemical Physics, 115, 7753 (2001)
42 Paddison, S. J., Paul, R., “The nature of proton transport in fully hydrated Nafion”, Physical Chemistry Chemical Physics 4, 1158, (2002)
43 Panday, Ashoutosh, Mullin, Scott, Gomez, Enrique. Wanakule, Nisita, Chen, Vincent L., Hesemer, Alexander, Pople, John and Balsara, Nitash P., Macromolecules 42, 4632 (2009)
44 Martinelli, Anne, Matic, Aleksandar, Jacobsson, Per, Borjesson, Lars, Fernicola, Alessandra and Scrosati, Bruno, J. Phys. Chem. 113, 11247 (2009)
45 Jang, Seung Soon, Molinero, Valeria, Cagin, Tahir, Goddard, William A. III , “Nanophase-Segregation and Transport in Nafion 117 from Molecular Dynamics Simulations: Effect of Monomeric Sequence”, Journal of Physical Chemistry B 108 3149 (2004)
46 Petersen, Matt K., Wang, Feng, Blake, Nick P., Metiu, Horia, and Voth, Gregory A. J. Phys. Chem. B109, 37273730 (2005)

Keywords

Mechanisms of Ionic Transport in Membranes for Batteries and Fuel Cells

  • J. Woods Halley (a1), Lingling Jia (a2) and Sean Bowman (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed