Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-20T05:53:11.026Z Has data issue: false hasContentIssue false

Mechanisms for Interstitial-Mediated Transient Enhanced Diffusion of N-type Dopants

Published online by Cambridge University Press:  01 February 2011

Scott Anthony Harrison
Affiliation:
scotth@che.utexas.edu, University of Texas at Austin, Chemical Engineering, 4305 Duval St., #116, Austin, TX, 78751, United States, 512-294-3522, 512-475-7824
Thomas F. Edgar
Affiliation:
edgar@che.utexas.edu, University of Texas at Austin, Chemical Engineering, 1 University Station, Austin, TX, 78712, United States
Gyeong S. Hwang
Affiliation:
gshwang@che.utexas.edu, University of Texas at Austin, Chemical Engineering, 1 University Station, Austin, TX, 78712, United States
Get access

Abstract

As silicon transistor dimensions scale down, transient enhanced diffusion of n-type dopants has become a major barrier toward achieving required junction depths for transistors. In this paper, we use density functional calculations to identify a pathway by which silicon interstitials can mediate As and P diffusion. We show that As-silicon interstitial and P-silicon interstitial pairs in the neutral and negative charge states diffuse via a mechanism in which the dopant is bond-centered at energy minima and threefold coordinated at the high energy saddle point during dopant migration. For both As-silicon interstitial and P-silicon interstitial pairs, we conclude that the neutral pairs will dominate under intrinsic conditions while the neutral and negatively charged pairs will both contribute under heavily doped extrinsic conditions.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Fahey, P.M., Griffin, P.B., and Plummer, J.D., Rev. Mod. Phys. 61, 289 (1989).Google Scholar
2 Ural, A., Griffin, P.B., and Plummer, J.D., J. Appl. Phys. 85, 6440 (1999).Google Scholar
3 Solmi, S., et al., J. Appl. Phys. 94, 4950 (2003).Google Scholar
4 Kim, R. et al., Jpn. J. Appl. Phys. 41, 227, (2002).Google Scholar
5 Tsamis, C. et al., Appl. Phys. Lett. 87, 201903, (2005)Google Scholar
6 Xu, J., Krishnamoorthy, V., Jones, K.S., and Law, M.E., J. Appl. Phys. 81, 107 (1997).Google Scholar
7 Chang, R.D. et al., Jpn. J. Appl. Phys. 41, 1221 (2002).Google Scholar
8 Duffy, R. et al., Appl. Phys. Lett. 86, 081917 (2005).Google Scholar
9 Ramamoorthy, M. and Pantelides, S.T., Phys. Rev. Lett. 76, 4753 (1996).Google Scholar
10 Pankratov, O. et al., Phys. Rev. B 56, 13172 (1997).Google Scholar
11 Xie, J.J. and Chen, S.P., Phys. Rev. Lett. 83,1795 (1999)Google Scholar
12 Harrison, S.A., Edgar, T.F., Hwang, G.S., Appl. Phys. Lett 87, 231905 (2005).Google Scholar
13 Liu, X.Y. et al., Appl. Phys. Lett. 82, 1839 (2003).Google Scholar
14 Perdew, J.P. and Wang, Y., Phys. Rev. B 45, 13244 (1992).Google Scholar
15 Kresse, G. and Furthmuller, J., Phys. Rev. B 54, 11169, (1996)Google Scholar
16 Vanderbilt, D., Phys. Rev. B 41, 7892, (1990)Google Scholar
17 Monkhorst, H.J. and Pack, J.D., Phys. Rev. B 13, 5188 (1976).Google Scholar
18 Henkelman, G., Uberuaga, B.P., and Jónsson, H., J. Chem. Phys 113, 9901 (2000).Google Scholar
19 Makov, G. and Payne, M.C., Phys. Rev. B 51, 4014 (1995).Google Scholar
20 Larsen, A. Nylandsted et al., J. Appl. Phys. 73, 691 (1993).Google Scholar
21 Haddara, Y.M. et al., Appl. Phys. Lett. 77, 1976 (2000).Google Scholar