Hostname: page-component-68945f75b7-tmfhh Total loading time: 0 Render date: 2024-08-06T07:04:29.149Z Has data issue: false hasContentIssue false

Mechanisms and Energetics of Surface Atomic Processes, an Atom-Probe Field Ion Microscope Study

Published online by Cambridge University Press:  15 February 2011

Tien T. Tsong*
Affiliation:
Institute of Physics, Academia Sinica Taipei, Taiwan, ROC
Get access

Abstract

Atom-probe field ion microscopy is capable of imaging solid surfaces with atomic resolution, and at the same time chemically analyzing atoms selected by the observer from the atomic image. The samples are restricted to those having a tip shape, but in many cases this is no longer a drawback since structures in high-tech materials are reducing in size to that comparable to or smaller than the field ion emitter tip. This technique is finding many applications in different areas. Our recent applications of this technique to the study of the dynamical behavior of surfaces and surface atoms and their mechanisms and energetics, and the atomic scale chemical and composition analysis will be briefly described.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tsong, T.T., “Atom-Probe Field Ion Microscopy,” Cambridge Univ. Press, Cambridge (1990).Google Scholar
2. Miller, M.K. and Smith, G.D.W., “Atom-Probe Microanalysis: Principles and Applications to Materials Problems,” Mat. Res. Soc. Pittsburgh (1989); T. Sakurai, S. Sakai and H. Pickering, “Atom-Probe Field Ion Microscopy and Its Applications,” Academic Press, N.Y. (1989).Google Scholar
3. Gao, Q.J. and Tsong, T.T., Phys. Rev. Lett. 54, 452 (1986).CrossRefGoogle Scholar
4. Kellogg, G.L., Phys. Rev. Lett. 55, 2168 (1985).CrossRefGoogle Scholar
5. Liu, H.M., Tsong, T.T., and Liou, Y., Phys. Rev. Lett. 58, 1535 (1987).Google Scholar
6. (a). Ehrlich, G. and Stoltz, K., Ann. Rev. Phys. Chem. 31, 603 (1980). (b). T.T. Tsong, Rep. Prog. Phys. 51, 759 (1988).CrossRefGoogle Scholar
7. Bassett, D.W. and Weber, P.R., Surface Sci. 70, 520 (1978); J.D. Wrigley and G. Ehrlich, Phys. Rev. Lett. 44, 661 (1980).Google Scholar
8. Tsong, T.T. and Casanova, R., Phys. Rev. B24, 3063 (1981).Google Scholar
9. Kellogg, G.L. and Feibelman, P.J., Phys. Rev. Lett. 64, 3143 (1990); C.L. Chen and T.T. Tsong, Phys. Rev. Lett. 64, 3147 (1990); P.J. Feibelman, Phys. Rev. Lett. 65, 729 (1990).Google Scholar
10. Tsong, T.T. and Chen, C.L., Nature, 355, 328 (1992).Google Scholar
11. Chen, S.P., Wei, C.M., Ren, D.M., Chen, C.L., and Tsong, T.T., to be published.Google Scholar
12. Tsong, T.T. and Gao, Q.J., Surface Sci. 182, L257 (1987).Google Scholar
13. Chen, C.L. and Tsong, T.T., to be published.Google Scholar
14. Ahmad, M., and Tsong, T.T., J. Chem Phys. 83, 388 (1985); D.M. Ren, J.H. Qin, J.B. Wang, and T.T. Tsong, to be published in Phys. Rev. B.CrossRefGoogle Scholar
15. Gauthier, Y., Baudoing, R., Lundberg, M., and Rundgren, J., Phys. Rev. B35, 7867 (1987), and references therein.CrossRefGoogle Scholar
16. Tersoff, J., Phys. Rev. B42, 10965 (1990).CrossRefGoogle Scholar
17. Strocio, J. and Eigler, D.M., Science 254, 1319 (1991).Google Scholar
18. Miskovsky, N.M. and Tsong, T.T., Phys. Rev. B46, 2640 (1992); N.M. Miskovsky, C.M. Wei, and T.T. Tsong, Phys. Rev. Lett. 69, 2427 (1992).Google Scholar
19. Mamin, H.J., Guethner, P.H., and Rugar, D., Phys. Rev. Lett. 65, (1990); I.W. Lyo and A. Avouries, Science 253, 173 (1991); A. Kobayashi, F. Grey, S. Williams, and M. Aono, to be published.Google Scholar
20. Tsong, T.T. and Kellogg, G.L., Phys. Rev. B12, 1343 (1975); S.C. Wang and T.T. Tsong, Phys. Rev. B26, 6470 (1982).Google Scholar
21. Whitman, L.J., Stroscio, J.A., Dragoset, R.A., and Celotta, R.J., Science 251, 1206 (1991).CrossRefGoogle Scholar