Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-19T10:19:59.009Z Has data issue: false hasContentIssue false

Mechanism of Facet Formation During Epitaxial CoSi2 Growth Using Co/Refractory Bilayers

Published online by Cambridge University Press:  21 February 2011

Jeong S. Byun
Affiliation:
Semiconductor Research Laboratory Lab., GoldStar Electron Co. Ltd., 50 Hyangjeong -Dong Cheongju-Si, 360–480, Korea
Kwan G. Rha
Affiliation:
Semiconductor Research Laboratory Lab., GoldStar Electron Co. Ltd., 50 Hyangjeong -Dong Cheongju-Si, 360–480, Korea
Woo S. Kim
Affiliation:
Semiconductor Research Laboratory Lab., GoldStar Electron Co. Ltd., 50 Hyangjeong -Dong Cheongju-Si, 360–480, Korea
Hyeong J. Kim
Affiliation:
Semiconductor Research Laboratory Lab., GoldStar Electron Co. Ltd., 50 Hyangjeong -Dong Cheongju-Si, 360–480, Korea
Get access

Abstract

The formation mechanism of facets occurring during epitaxial growth of CoSi2 are described using a Co/Ta bilayer. At the early stage of annealing, the diffusion of Co atom occurs across the interlayed Ta layer, first forming a CoSi layer on the Si substrate. CoSi2 grains nucleate at the CoSi/silicon interface and grows laterally parallel to the surface. Due to the difference of dominant moving species in CoS2 and CoSi, the CoSi2 grain at the interface impedes the interface movement, thereby, leading to the facet formation. Epitaxial CoSi2 grains nucleated at the non-epitaxial CoSi2/silicon interface and the faceted corner and grow laterally along the Si surface. With increasing annealing temperature, the epitaxial quality of the CoSi2 improves because of increased lateral growth rate of the CoSi2.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Van den Hove, L., Wolsters, R., Maex, K., De Keersmaecker, R.F., and Declerck, G.J., IEEE Trans. Electron Devices, ED-34, 554 (1987)Google Scholar
[2] Murarka, S.P., Suicides for VLSI Applications, (Academic Press, N.Y., 1983)Google Scholar
[3] Hsia, S.L. and Tan, T.Y., J. Appl. Phys. 70, 7579 (1991)Google Scholar
[4] Hsia, S.L., Tan, T.Y., Smith, P., and McGuire, G.E., J. Appl. Phys., 72, 1864 Google Scholar
[5] Byun, J.S., Kang, S.B., Kim, H.J., Park, K.H., and Kim, C.Y., J. Appl. Phys. 72, 1508 (1993)Google Scholar
[6] Byun, J.S., Cho, H.J., Kim, H.J., Kim, W.S., Choi, M., and Chun, D., Proc. 10th V-MIC Conf., Santa Clara, California, June 1993, p478 Google Scholar
[7] Beyers, R., J. Appl. Phys. 56, 147 (1984)Google Scholar
[8] Pretorius, R., Mat. Res. Soc. Symp. Proc. 25, 15 (1984)Google Scholar
[9] Bene, R.W., J. Appl. Phys. 61, 1826 (1987)Google Scholar
[10] Adams, D.P., Yalisove, S.M., and Eaglesham, D.J., Mat. Res. Soc. Symp. Proc. 311. 287 (1992)Google Scholar