Hostname: page-component-84b7d79bbc-7nlkj Total loading time: 0 Render date: 2024-07-30T04:01:05.166Z Has data issue: false hasContentIssue false

Mechanism of Chromium Deposition from Cr(CO)6 by Uv Laser Light

Published online by Cambridge University Press:  21 February 2011

R. Nowak
Affiliation:
Institute of Physical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, D-6900 Heidelberg, F. R. G
P. Hess
Affiliation:
Institute of Physical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, D-6900 Heidelberg, F. R. G
Get access

Abstract

The mechanism of metal film deposition from carbonyls as precursors is discussed in detail. It is shown that different species produced by UV laser irradiation in the gas phase contribute to film growth. Highly reactive species such as metal atoms may be important during the nucleation phase, whereas more stable carbonyls are responsible for the main growth process. This indicates that the main decarbonylation effect occurs at the surface. The higher level of impurity incorporation in chromium films in comparison with nickel films is explained by the relative position of the Fermi level in the d-band of Ni and Cr with respect to the 2π* level of CO, which favors CO bond dissociation in the case of chromium.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Jervis, T.R., J. Appl. Phys. 58, 1400 (1985)Google Scholar
[2] Schröder, H., Metev, S., Robers, W. and Rager, B., E-MRS Proceedings, Strasbourg (1986) 71 Google Scholar
[3] Tonneau, D., Auvert, G. and Pauleau, Y., J. Appl. Phys. 64, 5189 (1988)Google Scholar
[4] Ehrlich, D.J., Osgood, R.M. Jr. and Deutsch, T.F., J. Electrochem. Soc. 128, 2039 (1981)Google Scholar
[5] Solanki, R., Boyer, P.K., Mahan, J.E. and Collins, G.J., Appl. Phys. Lett. 38, 572 (1981)Google Scholar
[6] Solanki, R., Boyer, P.K. and Collins, G.J., Appl. Phys. Lett. 41, 1048 (1982)Google Scholar
[7] Mayer, T.M., Fisanick, G.J. and Eichelberger, T.S., J. Appl. Phys. 53, 8462 (1982)Google Scholar
[8] Yokoyama, H., Uesugi, F., Kishida, S. and Washio, K., Appl. Phys. A 37, 25 (1985)Google Scholar
[9] Flynn, D.K., Steinfeld, J.I. and Sethi, D.S., J. Appl. Phys. 59, 3914 (1986)Google Scholar
[10] Gluck, N.S., Wolga, G.J., Bartosch, C.E., Ho, W. and Ying, Z., J. Appl. Phys. 61, 998 (1987)Google Scholar
[11] Singmaster, K.A., Houle, F.A. and Wilson, R.J., Appl. Phys. Lett. 53, 1048 (1988)Google Scholar
[12] Konstantinov, L., Nowak, R. and Hess, P., Appl. Phys. A 47, 171 (1988)Google Scholar
[13] Nowak, R., Konstantinov, L. and Hess, P., Appl. Surf. Sci. 36, 177 (1989)Google Scholar
[14] Nowak, R., Konstantinov, L. and Hess, P., MRS Symp. Proc. Vol. 129 (1989)Google Scholar
[15] Nowak, R., Hess, P., Oetzmann, H. and Schmidt, C., Appl. Surf. Sci., to be publishedGoogle Scholar
[16] Shinn, N.D. and Madey, T.E., Phys. Rev. Lett. 53, 2481 (1984)Google Scholar
[17] Hoffmann, R., Solids and Surfaces, (VCH Verlagsgesellschaft mbH, Weinheim, 1988) p. 111 Google Scholar