Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T13:17:21.167Z Has data issue: false hasContentIssue false

Mechanical Testing of Thin Films

Published online by Cambridge University Press:  22 February 2011

C. T. Rosenmayer
Affiliation:
Rice University, Houston, Texas, 77251
F. R. Brotzen
Affiliation:
Rice University, Houston, Texas, 77251
R. J. Gale
Affiliation:
Texas Instruments Inc., Dallas, Texas, 75265
Get access

Abstract

Metal films used as conductors in integrated circuits must be able to withstand stresses created during their deposition, caused by mismatches in thermal expansion coefficients and by bending which occurs during manufacture and installation. These stresses may be biaxial or uniaxial in nature. This paper discusses testing techniques and gives examples of results of mechanical testing of thin metallic films of aluminum, aluminum-copper(2%), copper, and tungsten in uniaxial and biaxial tension. The film specimens were deposited on and removed from production silicon wafers in order to simulate as much as possible actual device conditions. Basic considerations for the comparison of the two testing methods are also presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hoffman, R. W., in Thin Films, edited by Wilsdorf, H. G. F. (Amer. Soc. Met., Metals Park, Ohio, 1964), pp. 99134.Google Scholar
2. Hoffman, R. W., in Physics of Thin Films, vol.3, edited by Hass, G. and Thun, R. E., (Academic Press, New York, 1966), pp. 211273.Google Scholar
3. Hardwick, D. A., Thin Solid Films 154, 109124, (1987).10.1016/0040-6090(87)90357-9Google Scholar
4. Badachhape, R. B., Margrave, J. L., and Brotzen, F. R., Thin Solid Films 139 L 77ndash;78 (1986).10.1016/0040-6090(86)90341-XGoogle Scholar
5. Rosenmayer, C. T., Brotzen, F. R., and Brady, D. P., submitted for publication to Thin Solid Films.Google Scholar
6. Beams, J. W., in Structure and Properties of Thin Films, Edited by Neugebauer, C. A., Newkirk, J. B., and Vermilyea, D. A., (John Wiley and Sons, New York, 1959), pp. 183193.Google Scholar
7. Griffin, A. J. Jr., Brotzen, F. R., and Dunn, C. F., Thin Solid Films 150, 237244 (1987).Google Scholar
8. Brotzen, F. R., Rosenmayer, C. T., and Gale, R. J., to appear in Thin Solid Films 166, (1988).10.1016/0040-6090(88)90390-2Google Scholar
9. Jovanovic, S. and Smith, C. S., J. Appl. Phys. 32, 121122 (1962).10.1063/1.1735940CrossRefGoogle Scholar
10. Lawley, A. and Schuster, S., Rev. Sci. Instr. 33, 11781180 (1972).10.1063/1.1717724Google Scholar
11. Springer, R. W. and Catlett, D. S., Thin Solid Films 54, 197205 (1978).Google Scholar
12. Ranta-Eskola, A. J., Int. J. of Mech. Sci. 21, 457465 (1979).10.1016/0020-7403(79)90008-0Google Scholar
13. Tsakalakos, T., Thin Solid Films 75, 293305 (1981).10.1016/0040-6090(81)90407-7Google Scholar
14. Papirno, R., J. Appl. Phys. 32, 11751176 (1961).10.1063/1.1736187Google Scholar
15. Catlin, A. and Walker, W. P.. J. Appl. Phys. 31, 2135–2139.10.1063/1.1735513Google Scholar
16. Gerard, G. and Papirno, R., Trans. ASM 49, 132148 (1951).Google Scholar
17. Brown, W. F. Jr. and Sachs, G., Trans. ASME 70, 241251 (1948).Google Scholar
18. Simmons, G. and Wang, H., Single Crystals Elastic Constants and Calculated Aggregate Properties: A HANDBOOK, 2nd ed.(MIT Press, Cambridge, 1971).Google Scholar